Асинхронный двигатель с короткозамкнутым ротором

Где применяется

Большая часть всех электродвигателей, выпускающихся в производственных масштабах, являются асинхронными.

Асинхронный двигатель с короткозамкнутым ротором
Крановый асинхронный электродвигатель

Список сфер, где применяются асинхронные моторы:

  • медицинское оборудование;
  • техника для записи звука;
  • устройства автоматики;
  • бытовые приборы.

Обратите внимание! АД применяется там, где нужны высокие мощности, но вместе с тем нет необходимости в плавном регулировании скорости вращения в больших диапазонах. Такие электромоторы чаще всего используют в тяжелом оборудовании, к примеру, в подъемных кранах, станках, лифтах и прочих подъемниках

Проще говоря, асинхронную машину нужно подключать в тех условиях, где работа производится под нагрузкой

Такие электромоторы чаще всего используют в тяжелом оборудовании, к примеру, в подъемных кранах, станках, лифтах и прочих подъемниках. Проще говоря, асинхронную машину нужно подключать в тех условиях, где работа производится под нагрузкой.

Пуск в ход асинхронных двигателей

Выводы обмоток статора А, В, С, X, Y, Z подключаются на клеммник двигателя, где согласно стандарту они обозначаются: начала С1, С2, С3, и соответственно концы С4, С5, С6. Выводы располагаются так, чтобы их было удобно соединять в звезду или в треугольник, как показано на рис. 21.

Обмотки каждой фазы статора рассчитаны на определенное фазное напряжение Uф. Поэтому, соединяя обмотку в звезду или в треугольник, можно присоединять двигатель к сетям с напряжением, отличающимся в √3 раз. Например, если Uф = 127 В, то при соединении статора

в треугольник подключают его к сети с напряже

нием UL = 220 В. Если UL = 380 В (Uф = 220 В), то обмотки статора соединяют в звезду.

Асинхронный двигатель с фазным ротором запускается при помощи реостата, включаемого в цепь ротора (рис. 22). Сопротивление реостата 1, подключается к кольцам ротора 2 при помощи щеток 3.

Рис. 21. Расположение зажимов обмотки статора

Наибольшая величина сопротивления соответствует положению

«пуск». По мере разгона ротора непрерывно уменьшаются его э.д.с. и ток. Это позволяет уменьшать сопротивление реостата 1, передвигая ступенями подвижные контакты 5. К концу пуска ротор оказывается замкнутым накоротко «ход». Реостат рассчитан только на время пуска двигателя.

Асинхронный двигатель с короткозамкнутым ротором — его пуск производится прямым включением в сеть. Недостатком такого способа пуска является значительный пусковой ток (4,5—6,5)IН при относительно малом пусковом моменте

Мп=(1Р1,6)Мн.

Рис. 22. Схема асинхронного двигателя с фазным ротором

Двигатели очень малой мощности имеют круглые пазы (рис. 23а). У двигателей мощностью более 2—3 кВт пазы ротора имеют форму, показанную на рис. 23б, а при мощности более 20—30 кВт еще более глубокие. Эти пазы заливают расплавленным алюминием. При мощностях двигателей более 120—150 кВт пазы выполняют в виде глубокой щели (рис. 23в) и в них закладывают узкие высокие медные стержни.

Смысл применения глубоких пазов заключается в следующем. В первое

мгновение пуска, когда f2= f1, провод, лежащий в глубоком пазу, охватывается магнитными линиями так, как показано на рис. 9.23в. часть провода 1, находящаяся у дна паза, охвачена наибольшим числом линий, а части 2, 3, 4 тем меньшим, чем дальше они от дна паза. Поэтому индуктивное сопротивление нижних слоев металла провода значительно больше, чем верхних, и при f2 = f1 весь ток ротора оттесняется к поверхности паза. При этом сечение провода используется не полностью, активное сопротивление обмотки ротора увеличивается и пусковой момент становится большим. Одновременно уменьшается пусковой ток обмотки статора. По мере разгона ротора частота f2

Асинхронный двигатель с короткозамкнутым ротором

Рис. 23. Пазы роторов асинхронных двигателей

шается, явление вытеснения тока прекращается и сопротивление обмотки ротора автоматически уменьшается. Аналогично работает двигатель с двойным пазом (рис. 23г).

Для понижения пускового тока двигателей с короткозамкнутым ротором, работающих при соединении статора в треугольник, часто применяется схема переключения статора на звезду в первом этапе пуска (рис. 24). Если замкнуть ножи переключателя 2 вниз и затем подать напряжение, то напряжение на фазу будет в 3 раз меньше номинального, а ток уменьшится в 3 раза. Когда ротор пришел во вращение, ножи переключателя перекидываются вверх и двигатель работает при номинальном напряжении. Такой пуск вызывает уменьшение пускового момента примерно в 3 раза, и может применяться только там, где двигатель пускается почти вхолостую.

Рис. 24. Схема пуска двигателя переключением статора со звезды на треугольник

Устройство асинхронного двигателя

Основные части двигателя: статор и ротор. Три обмотки находятся на полюсах железного сердечника кольцевой формы, сети так называемого трехфазного тока 0 располагаются одна относительно другой строго под углом 120 градусов. Также отметим, что внутри самого сердечника закреплен на той же оси цилиндр из высококачественного металла. Он называется – ротор.

Из чего состоит асинхронный электродвигатель

Статор

Статор это неподвижная часть, которая формирует вращающееся магнитное поле. Именно это поле непосредственно соприкасается с электромагнитным полем самой подвижной части, именуемой ротором, тем самым происходит полноценное вращение ротора.

Устройство статора

  1. Первое это корпус, изготовленный из чугуна, но часто встречаются корпуса из алюминия.
  2. Далее идет сердечник из пластин, которые изготовлены из электротехнической стали в толщину 0,5 миллиметров. Пластины сердечника скреплены скобками или же швами, покрыты изоляционным лаком, закреплены в станине при помощи стопорных болтов.
  3. Ну и последнее в устройстве статора– обмотки, сдвинутые друг к другу на 120 градусов, как правило, в устройстве их не более трех, они вложены в пазы на внутренней стороне самого сердечника, изготовлены из изолированного медного, алюминиевого провода круглого/квадратного сечения.

Сердечник статора

Выполняется с посадкой на вал, без наличия промежуточной втулки. Посадка сердечников используется в двигателях с высотой непосредственно оси в 250 миллиметров без шпонки. В больших двигателях сердечники закреплены на вал с применением шпонки. В случае, если ротор в диаметре 990 миллиметров, сердечник шихтуют из разных сегментов.

Обмотка статора и количество оборотов электродвигателя

Определить количество оборотов электродвигателя можно лишь при помощи обмотки. В этом нет ничего сложного и достаточно просто следовать инструкции и все получится. Для этого нужно:

  1. Снять крышку с двигателя.
  2. Найти одну из секций и посмотреть, сколько места она занимает по окружности самого круга. Например, если катушка заняла половину круга – это 180 градусов, то двигатель идет на 3000 оборотов в минуту.
  3. Если в окружности вмещается три секции на 120 градусов, то это двигатель на 1500 оборотов в минуту.
  4. Если в катушке вмещается 4 секции на 90 градусов, то двигатель на 3000 оборотов в минуту.

Ротор

Вращается внутри самого статора (выше описывали, что он представляет собой). Ротор – элемент электрического двигателя. Его вал соединен с деталями агрегаторов. Если говорить о массивном роторе – это цельный стальной цилиндр, который помещается во внутрь статора с не присоединенным к его поверхности сердечником (также выше описывали что такое сердечник).

Также бывают еще разновидности ротора:

  • фазный (уложен в пазы сердечника обмоткой и соединен по схеме «звезда»),
  • короткозамкнутый (залитый в поверхность сердечника, замкнут с торцов при помощи двух высокопроводящих медных колец).
Популярные статьи  В чем причина, почему не работает выключатель с подсветкой?

Устройство короткозамкнутого ротора

Такая обмотка зачастую называется у профессионалов «беличьим колесом» по причине того, что его внешняя конструкция достаточно схожа с ним. Состоит из аллюминевых стержней, торцов с двумя кольцами замкнутых накоротко. Такие стержни вставлены, как правило, в пазы сердечника самого ротора.

Как сделан фазный ротор

Фазный ротор представляет собой двигатель, который поддается регулировке при помощи добавления в цепь ротора так называемых добавочных сопротивлений. Используются такого плана двигатели во время пуска с нагрузкой на валу. В свою очередь, увеличение сопротивления в цепи ротора предоставляет возможность увеличить пусковой момент.

Принцип действия асинхронного двигателя

Рассмотрим устройство, показанное на рис. 17. Оно состоит из постоянного магнита 1, медного диска 2, рукоятки 3 и подшипников 4. Если вращать магнит при помощи рукоятки, то медный диск начинает вращаться в ту же сторону, но с меньшей частотой. Медный диск можно рассматривать как бесчисленное множество замкнутых витков; при вращении магнита 1 его магнитные силовые линии (м.с.л.) пересекают витки диска, и в витках наводится электродвижущая сила (э.д.с.). В замкнутых витках диска появляется ток, а вокруг проводников с

током — магнитное поле, которое взаимодействует с магнитным полем магнита и приводит диск во вращение.

Обозначим:

n1— частота вращения магнита (синхронная частота), об/мин;

n2— частота вращения диска, об/мин;

n — разность частот вращения магнита и диска, об/мин.

Частота вращения диска меньше частоты вращения магнита, и, следовательно, диск вра-

Асинхронный двигатель с короткозамкнутым ротором

Рис. 17. Модель асинхронного двигателя

щается с несинхронной (асинхронной) частотой. Разница частот магнита и диска представляет собой частоту, с которой м.с.л. пересекают витки диска. Отношение разницы частот к синхронной частоте называется скольжением. Скольжение может быть выражено в долях единицы или в процентах:

Асинхронный двигатель с короткозамкнутым ротором

В двигателях вращающееся магнитное поле создается трехфазным током, протекающим по обмотке статора, а роль диска выполняет обмотка ротора. Активная сталь статора и ротора служит магнитопроводом, уменьшающим в сотни раз сопротивление магнитному потоку.

Под влиянием подведенного к статору напряжения сети U1 в его обмотке протекает ток I1. Этот ток создает вращающийся магнитный поток Ф, замыкающийся через статор и ротор. Поток создает в обеих обмотках э.д.с. E1 и E2, как в первичной и вторичной обмотках трансформатора. Таким образом, асинхронный двигатель подобен трехфазному трансформатору, в котором э.д.с. создаются вращающимся магнитным потоком.

Пусть поток вращается в направлении движения стрелки часов. Под влиянием э.д.с. E2 в обмотке ротора пойдет ток I2, направление которого показано на рис. 18. Предположим, что он совпадает по фазе с E2. Взаимодействие тока I2 и потока Ф создает электромагнитные силы F, приводящие ротор во вращение, вслед за вращающимся потоком. Таким образом, асинхронный двигатель представляет собой трансформатор с вращающейся вторичной обмоткой и способный поэтому превращать электрическую мощность E2I2cosφ в механическую.

Асинхронный двигатель с короткозамкнутым ротором

Рис. 18. Работа асинхронного двигателя при cosφ2 = 1

Ротор всегда отстает от вращающегося магнитного потока, так как только в этом случае может возникать э.д.с. E2, а следовательно, ток I2 и силы F. Чтобы изменить направление вращения ротора, следует изменить направление вращения потока. Для этого меняют местами два любых провода, подводящие ток от сети к статору. В этом случае меняется порядок следования фаз АВС на АСВ или ВАС, и поток вращается в обратную сторону.

Ротор двигателя вращается с асинхронной частотой n2, поэтому и двигатель называется асинхронным. Частоту вращения магнитного потока называют синхронной частотой n1. Частота вращения ротора

Асинхронный двигатель с короткозамкнутым ротором

Теоретически скольжение меняется от 1 до 0 или от 100% до 0, так как при неподвижном роторе в первый момент пуска n2 = 0; а если вообразить, что ротор вращается синхронно с потоком, n2 = n2.

Чем больше нагрузка на валу, тем меньше скорость ротора n2 и следовательно больше S, так как больший тормозной момент должен уравновеситься вращающим моментом; последнее возможно только при увеличении E2 и I2, а значит и S. Скольжение при номинальной нагрузке Sн у асинхронных двигателей равно от 1 до 7%; меньшая цифра относится к мощным двигателям.

Важные технические характеристики

Современные асинхронные двигатели с фазным ротором должны отвечать определенным параметрам, гарантирующим их качественную и безотказную работу в тех или иных условиях. Правильно подобранная механическая характеристика асинхронного двигателя с оптимальными электрическими показателями – залог успешной и эффективной работы всей электроустановки.

Асинхронный двигатель с короткозамкнутым ротором

Среди основных технических характеристик электромотора можно выделить:

  • соответствующая техническому регламенту мощность;
  • габаритные размеры и конструкция;
  • степень защиты от воздействия окружающей среды во время эксплуатации в определенных условиях (например, одни модели специально предназначены для работы в помещениях, а другие могут работать на открытом воздухе или одни агрегаты выдерживают сильный холод, а другие – экстремальную жару);
  • толщина и качество изоляционного покрытия (устройство асинхронного двигателя с фазным подключением ротора должно предусматривать устойчивость к повышенным внутренним температурам и сильное нагревание обмоток, для чего здесь используется специальный слой защитной изоляции);
  • рабочие режимы в соответствии с установленными нормами;
  • система охлаждения, обеспечивающая нормальное функционирование силового агрегата в заданном рабочем режиме;
  • уровень создаваемого шума при работе на холостом ходу (желательно не выше второго класса).

Это наиболее важные параметры, на которые необходимо обращать внимание при выборе и эксплуатации электрического двигателя. Но существует и другие характеристики, к примеру, определяющие специфические режимы работы и техническое обслуживание асинхронного электромотора

Как правило, все они подробно описываются в руководстве и технической документации к силовому агрегату или электроприводу.

Технические соответствия

По стандартам, установленным ГОСТ, АД с фазным ротором должен быть приведен в соответствие определенным параметрам для работы в конкретных условиях. Список требований включает:

  • габаритные показатели и мощность;
  • уровень защиты, соответствующий эксплуатационным условиям (наружная установка и внутри помещения);
  • повышенная термостойкость изолирующего материала;
  • режимы функционирования;
  • охлаждающая система, собранная в соответствии с характеристиками силового агрегата;
  • уровень шума, на холостом ходу не превышающий 2 класс.

Также АД должен быть собран в соответствии определенным климатическим условиям, в которых планируется его использовать. Отдельные модели рассчитаны на конкретный климат. Если для умеренных широт можно использовать большинство современных двигателей, то для территорий с повышенной или пониженной температурой необходимо применять строго соответствующую технику. В противном случае могут значительно снизиться эксплуатационные характеристики, работа станет нестабильной, возможен выход из строя.

Устройство

Асинхронный двигатель с короткозамкнутым ротором

Устройство двигателя

Наиболее наглядно представить конструкцию агрегата можно на примере асинхронного двигателя, имеющего короткозамкнутый ротор, второй вид электромоторов имеет несколько иную конструкцию, это вызвано тем, что они используют промышленную сеть в 380 Вольт.

Основными составными частями такой электрической машины являются статор и ротор, которые не соприкасаются между собой и имеют воздушный зазор. Такая конструкция основных частей связана с тем, что в состав обеих основных частей электромотора входят так называемые активные части – состоящие из металлического проводника обмотка возбуждения.

Для каждой части имеются своя соответственно статорная и роторная обмотки и стальной сердечник – магнитопровод. Это основные части электродвигателя, принципиально необходимые для работы машины, все остальные части – корпус, подшипники качения, вал, вентилятор – это конструктивно необходимые, но абсолютно не влияющие на принцип работы прибора.

Они во многом играют важную роль, например, подшипники качения, обеспечивают возможность плавности хода, корпус защищает от механического воздействия на основные рабочие части, вентилятор обеспечивает обдув двигателя и отвод тепла, выделяемого при работе, но на принцип преобразования электрической энергии в механическую не влияют.

Популярные статьи  Как собрать трёхфазный квартирный щиток?

Итак, основными частями асинхронного электромотора, как электрической машины являются:

  1. Статор – основной элемент электромотора, состоящая из трехфазной (или многофазной) обмотки. Особенностью обмотки является определенный порядок расположения витков – проводники равномерно расположены в пазах, имеющих угол 120 градусов по всей окружности.
  2. Ротор – второй основной элемент агрегата, представляющий собой цилиндрический сердечник с залитыми алюминием пазами. Такая конструкция из-за своей особенности называется «беличья клетка» или короткозамкнутым типом ротора. В ней медные стержни замкнуты на концах кольцом с обеих сторон цилиндра.

Кроме самого простейшего вида асинхронного электромотора с простым ротором, к семейству асинхронных двигателей относятся и машины, которые имеют более сложную конструкцию, обмотки, у которых имеются как у статора, так и ротора.

Трехфазные обмотки, а конструктивно их по одной на каждую фазу, соединяются подобно обмоткам статора или «звездой» или «треугольником», и концы обмоток этих выводятся на контактные кольца, которые вращаются на валу, электрический ток на них передается через щетки из графита. Этот тип электродвигателей имеет большую мощность и применяется уже в промышленных машинах и станках.

Схемы подключения

Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».

Треугольник

Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).

схема подключения «треугольник»

В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля

Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку

Звезда

Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.

схема подключения «звезда»

Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.

Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).

Асинхронный двигатель с короткозамкнутым роторомАсинхронный двигатель, треугольник в сборе.

Асинхронный двигатель с короткозамкнутым роторомАсинхронный двигатель, звезда в сборе

В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.

5.2. Устройство асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каж­дая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вто­ричной, так как энергия в нее поступает из обмотки статора за счет магнит­ной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рас­смотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.5.2). Двигатели этого вида имеют наиболее широкое применение.

Асинхронный двигатель с короткозамкнутым ротором

Рис.5.2. Устройство трехфазного асинхронного двигателя

с короткозамкнутым ротором:

1 — вал; 2, 6 — подшипники; 3, 7 — подшипниковые щиты; 4 — коробка выводов;

5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкну-

той обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы

Неподвижная часть двигателя — статор — состоит из корпуса // и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алю­миниевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехничес­кой стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными свар­ными швами по наружной поверхности пакета. Такая конструкция Сердеч­ника способствует значительному уменьшению вихревых токов, возникаю­щих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продоль­ные пазы, в которых расположены пазовые части обмотки статора, соеди­ненные в определенном порядке лобовыми частями, находящимися за преде­лами сердечника по его торцовым сторонам. Конструкция короткозамкнутого ротора приведена на рис.5.3.

Асинхронный двигатель с короткозамкнутым ротором

Рис.5.3. Конструкция короткозамкнутого ротора: а — беличья клетка; б — ротор с медной стержневой обмоткой; в — ротор с алюминиевой литой обмоткой;

1 — сердечник ротора; 2 — стержни; 3 — замыкающие кольца;

4 — лопасти вентилятора

Обмотка статора асинхронного электродвигателя может быть соединена звездой или треугольником. Схемы соединения представлены на рис.5.4

Асинхронный двигатель с короткозамкнутым ротором

Рис.5.4. Схемы соединения выводов трехфазных обмоток электродвигателя:

а — звезда; б — треугольник

Историческая справка

Первые упоминания асинхронной машины появились в 1888 году, когда Никола Тесла получил патент на схему стандартного электродвигателя. Развитие данное изобретение получило в том же году. Теоретическая статья о возможностях асинхронного двигателя была опубликована Галилео Феррарисом.

Первый трехфазный АД был запатентован в Германии российским физиком-изобретателем Михаилом Осиповичем Доливо-Добровольским. Изобретение появилось уже в 1889 году, что в сочетании с возможностью передавать электроэнергию на значительные расстояния стало знаковым периодом в истории развития электродвигателей. Еще через год тот же ученый разработал систему трансформатора, работающего на трехфазном питании.

Эти несколько лет стали решающими и привели к повсеместному применению электрических машин и промышленного оборудования. Такой подход позволил значительно ускорить большинство процессов, повысить общую эффективность работы, снизить трудозатраты.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Популярные статьи  Указатель напряжения до 1000в и выше: увн 80, унн комби и увн 10

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Фазный ротор

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Обозначение выводов обмоток ротора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M

Обозначение выводов обмоток ротора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Примечание: Контактные кольца роторов асинхронных двигателей обозначают так же, как присоединенные к ним выводы обмотки ротора, при этом расположение колец должно быть в порядке цифр, указанных в таблице, а кольцо 1 должно быть наиболее удаленным от обмотки ротора. Обозначение самих колец буквами необязательно.

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
ГОСТ 26772-85 Машины электрические вращающиеся. Обозначение выводов и направление вращения.
А.И.Вольдек. Электрические машины. Учебник для студентов высш. техн. заведений. изд. 2-е, перераб. и доп.-Ленинград: Энергия, 1974.

Подключить двигатель к однофазной цепи

Асинхронный двигатель с короткозамкнутым ротором

Изготовленный для работы от трёхфазного источника питания электромотор может работать и от домашней однофазной сети, но при этом существенно снизятся его характеристики, такие как КПД, коэффициент мощности. Кроме того, снизятся мощность и пусковые показатели.

Если же без подключения не обойтись, то требуется из трёх обмоток статора собрать схему, где их будет только две. Одна рабочая, а другая пусковая. Например, есть три катушки с началами С1, С2, С3 и концами С4, С5, С6 соответственно. Для создания первой (рабочей) обмотки двигателя объединяем концы С5 и С6, а их начала С3 и С2 подключаем к источнику однофазного тока, например, бытовой сети 220 вольт. Роль второй, пусковой обмотки, будет выполнять оставшаяся незадействованная катушка стартера. Она подключается к источнику питания через конденсатор, соединённый с ней последовательно.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: