Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности

Обслуживание и ремонт

Работа аппаратов связана с высокими значениями мощностей

Поэтому их обслуживанию уделяется повышенное внимание. Ежедневно обслуживающий персонал совершает осмотры, контролирует показания измерительных приборов

В процессе техобслуживания оцениваются следующие показатели:

  1. Степень истощения прибора, поглощающего влагу.
  2. Количество масла.
  3. Износ механизмов регенерации масла.
  4. Наличие подтекания, механических повреждений трубопроводов радиаторов, корпуса.

Если на объекте не предусмотрено круглосуточное дежурство персонала, периодическая ревизия производится раз в месяц. На трансформаторных пунктах осмотр выполняют раз в 6 месяцев.

При необходимости меняют или доливают масло. Его цвет контролируется при визуальном осмотре. Если оно стало темным, его меняют. Раз в год и при проведении капитального ремонта выполняют лабораторное исследование состава масла.

Для разрушения пленки окислов на медных и латунных элементах раз в 6 месяцев отключают установку от питания. Переключатель переводят через все положения несколько раз. Такую процедуру проводят перед сезонными колебаниями нагрузки.

Силовая аппаратура является важным элементом сети энергоснабжения

Они функционируют круглосуточно, поэтому важно уделять внимание особенностям их выбора и обслуживанию. Это одно из сложнейших, но крайне важных устройств

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Вторичный ток:

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности

Напряжение через амперметр:

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор. Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np), развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp, значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Классификация трансформаторов по электрическим параметрам

Классификация по данным особенностям трансформаторов позволяют оценить способность применения того или иного типа трансформатора в конкретном случае. В соответствии с этим трансформаторы по электрическим параметрам разделяются на следующие группы:

1. По рабочей частоте. Так как от частоты тока переменного напряжения зависят используемые материалы, из которых изготавливаются сердечник, обмотки и изоляция. В соответствие с этим различают трансформаторы следующих типов:

— пониженной частоты – рабочая частота ниже 50 Гц;

— промышленной частоты – рабочая частота 50 Гц;

— повышенной частоты – рабочая частота 100 – 10000 Гц;

— ультразвуковой частоты – рабочая частота более 10 кГц;

— высокой частоты – рабочая частота свыше 100 кГц.

В отношении импульсных трансформаторов чаше используется длительность импульса. В настоящее время мощные трансформаторы в большинстве случаев питаются от сетей промышленной частоты, но в современной электронике в подавляющем случае используют трансформаторы, рассчитанные на высокую и ультразвуковую частоту. Это позволяет снизить габариты трансформатора.

2. По системе тока. Данная особенность трансформатора позволяет разделить трансформаторы на:

— однофазные;

— многофазные (например, трёхфазные, шестифазные и т.д.).

3. По величине электрического напряжения. Данный параметр характеризует величину напряжения, на которую рассчитана изоляция кокой-либо обмотки или обмоток трансформатора. По данному параметру трансформаторы делятся:

— низковольтные трансформаторы, у которых рабочее напряжение обмотки (или обмоток) не превышает 1000 – 1500 В;

— высоковольтные трансформаторы, у которых рабочее напряжение обмотки выше 1000 — 1500 В.

В настоящее время в бытовой радиоэлектронике в большинстве случаев используются низковольтные трансформаторы.

4. По величине мощности. Данный параметр достаточно условен и прежде всего вводится для удобства описания конкретного трансформатора:

— малой мощности, имеющие мощность порядка десятка Вт;

— средней мощности, имеющих мощность сотни Вт;

— большой мощности, имеющие мощность нескольких кВт.

Эксплуатация изделий

При эксплуатации однофазных преобразующих устройств особое внимание обращается на безопасное обращение с ними, что объясняется высоким напряжением, присутствующим на первичных обмотках

Также важно учитывать следующие моменты, касающиеся правил установки и включения трансформаторов в электрические схемы:

чтобы избежать выхода обмоток из строя (выгорания), следует защищать вторичные цепи от КЗ;
важно следить за тепловым режимом сердечника и обмоток и, если потребуется, предусмотреть их охлаждение.

Уход за однофазным трансформатором сводится к стандартным процедурам, которые предусмотрены положениями действующих нормативов.

Как правильно понять: что такое виток обмотки?

Виток – это основной технический элемент обмотки, представляющий собой единичные или групповые проводки, расположенные параллельно на стержне магнитопровода. Взятая за единицу измерения совокупность витков, которая, соответственно, образовывается в той или иной электроцепи, и является обмоткой трансформатора.

Сама же обмотка состоит с двух важных компонентов: первый – проводники, второй – изоляционные детали. Задача вторых элементов – защищать витки, предупреждать электрические сбои в сети, препятствовать смещению комплектующих в 1 обмотке трансформаторов

Важно помнить! Обмотки трансформаторов различаются техническими характеристиками и параметрами. Так, обмотки трансформаторов различаются по способу размещения на стержне, могут быть различными по направлению и способу намотки

Популярные статьи  Как можно без замены люстры и без штробления стены сделать так, чтобы выключатель был кнопочный и ниже, на уровне глаз?

Специалисты еще оценивают обмотки трансформатора по числу витков, оценивают применяемый агрегат по классу напряжения, изучают перед применением схему соединения обмоток между собой. Следует учитывать каждый обозначенный фактор при выборе агрегата.

С понятием «виток обмотки» связан и другой термин – «слой обмотки». А что он обозначает, также постараемся раскрыть в данной статье.

Виток – это мера, а вот слой – это уже следствие технического процесса, в ходе которого витками формируются положенные слои, один, два или много. Но помните, что ничего нельзя воспринимать буквально, так как в одном слое может быть один или несколько десятков витков. А сам виток способен формироваться из 6-8 параллельных проводков положенной формы.

Что такое силовой трансформатор и его назначение

Основная сфера применения СТ связана с передачей и распределением электроэнергии, упрощенно это представлено на рисунке ниже.

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности
Схема передачи электроэнергии

Как видно из рисунка, в цепи между генератором и потребителем может быть установлено несколько СТ. Первый повышает напряжение до 110 кВ (чем оно выше, темь меньше потерь при передаче на дальние расстояния) и подает его на ЛЭП. На выходе линии установлен второй СТ на районной подстанции, откуда производится передача по подземному кабелю на трансформаторный пункт, откуда запитываются конечные потребители.

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности
Трансформаторный пункт

Устройство и принцип работы однофазного двухобмоточного трансформатора

Назначение, области применения и классификация трансформаторов

Трансформаторы.

Трансформатором называется электромагнитное устройство, служащее для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию переменного тока другого напряжения без изменения частоты.

Потребность трансформирования, т.е. повышения и понижения переменного напряжения вызвана необходимостью передачи электрической энергии на большие расстояния. Чем выше величина передаваемого напряжения, тем, при равной мощности генератора, меньше ток. Следовательно, для передачи энергии потребуются провода меньшего сечения, что приводит к экономии цветных металлов, к уменьшению веса и стоимости линий электропередач (ЛЭП). Кроме того, с уменьшением тока уменьшаются потери мощности в линиях передач ∆P=I2Rл.

По применению трансформаторы можно разделить на следующие типы:

1. Силовые трансформаторы, используемые в сетях передачи и распределения электроэнергии.

2. Автотрансформаторы, имеющие плавную регулировку выходного напряжения и используемые для его изменения (регулирования).

3. Измерительные трансформаторы, применяемые в качестве элементов измерительных устройств.

4. Трансформаторы специального назначения (печные, сварочные, пиковые, изолирующие и т.д.)

Применяемые в настоящее время изоляционные материалы позволяют увеличить напряжения в ЛЭП до 1250кВ.

Трансформатор состоит из ферромагнитного (стального) сердечника (ФМС) и двух обмоток: первичной с числом витков W1, к которой подводится напряжение источника U1, и вторичной – с числом витков W2,на зажимах которой возникает напряжение U2.Сердечник трансформатора собирается из отдельных листов электротехнической стали (толщиной 0,3-0,5 мм), изолированных друг от друга для уменьшения потерь на вихревые токи.

В основу работы трансформатора положен принцип взаимоиндукции. При включении первичной обмотки W1 на переменное напряжение U1 в ней появится ток I0.Этот ток, протекая по виткам W1, вызовет появление магнитного потока первичной обмотки, который состоит из основного или, по-другому, рабочего потока Ф, замыкающегося по сердечнику и потока рассеяния Фδ1, замыкающегося по воздуху (рис. 4.3.). Электрическая энергия передается из первичной обмотки во вторичную с помощью рабочего потока.

Переменный синусоидальный рабочий магнитный поток Ф на основании закона электромагнитной индукции наводит в первичной обмотке ЭДС самоиндукции E1, а во вторичной обмотке — ЭДС взаимоиндукции Е2, которая создает на зажимах вторичной обмотки напряжение U2.

Если ко вторичной обмотке трансформатора присоединить нагрузку Zн(рис. 4.4.), то в ней появится ток I2, который, протекая по виткам W2, вызовет появление магнитного потока во вторичной обмотке. Этот поток состоит из потока Ф2, замыкающегося по сердечнику и потока рассеяния Фδ2, замыкающегося по воздуху.

Вторичный поток Ф2 по правилу Ленца всегда направлен навстречу потоку первичной обмотки и стремится его уменьшить. Уменьшение потока Ф повлечет за собой уменьшение ЭДС Е1. В результате увеличится разность между напряжением U1 и ЭДС Е1, что приведет увеличению токапеовичной обмоткиI0 до тока I1, что компенсирует поток Ф2 (рис.4.4). Таким образом, суммарный рабочий магнитный поток Ф1 — Ф2останется неизменным и приблизительно равным первоначальному потоку Ф, сцепленному с обеими обмотками трансформатора.

Переменные магнитные потоки рассеяния первичной и вторичной обмоток Фδ1 и Фδ2 сцеплены с одной из обмоток и наводят в них соответствующие ЭДС рассеяния Еδ1 и Еδ2.

Немного из истории

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности

Изобретение трансформаторов начиналось ещё в 1876 году великим русским учёным П.Н. Яблоковым. Его изделие не имело замкнутого сердечника, он появился позже – в 1884 году. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый трёхфазный асинхронный двигатель и трансформатор. Через два года была представлена презентация трёхфазной высоковольтной линии протяженностью 175 км, где успешно повышалась и понижалась электроэнергия.

Чуть позже появились масляные агрегаты, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

Откуда он появился

В начале XIX века ученые изучали свойства магнитного поля. И экспериментально было показано, что переменное магнитное поле способно создавать ток: его фиксировали приборами на проводнике. При этом долгое время никто не измерял его величину.

К середине того же века были изучены свойства ферромагнетиков и параметры магнитного поля, появился даже прообраз трансформатора — катушка Румкорфа. Наконец, в 1876 году русский ученый П. Н. Яблочков запатентовал первый в мире стержневой трансформатор.

Чуть позже в Англии стали производить первые трансформаторы с замкнутым сердечником, которые и стали прообразом почти всех современных устройств этого типа. Все дальнейшие работы велись в направлении усовершенствования, и основывались они на изучении эксплуатационных свойств этого устройства. Так, были введены сердечники из слоистого материала, масляное охлаждение. В СССР распространение трансформаторов шло вместе с электрификацией всей страны, с конца 20-х годов прошлого века.

ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ

Трансформаторы напряжения (ТН) являются измерительными преобразователями, выполняющими масштабированное понижение первичного напряжения (U) электрической сети, необходимое для работы схем измерения, учёта, защиты и автоматики.

Поскольку понижение (или повышение) значения U осуществляет также любой силовой трансформатор, может возникнуть вопрос — в чём заключаются отличительные особенности работы ТН? Рассмотрим их по пунктам.

Точность преобразования.

Трансформатор напряжения, вторичные цепи которого подключаются к аппаратуре РЗА и измерительным цепям, оказывает влияние на точность результата измерения. ТН наряду с измерительными приборами относится к средствам измерений (СИ).

Это означает, что погрешность ТН, возникающая в процессе трансформации, строго нормируется рамками присвоенного ему класса точности, а сам ТН подвергается регулярной процедуре поверки уполномоченной организацией.

Кроме этого, тип применяемого ТН должен присутствовать в Государственном реестре средств измерений. На практике это выполняется только в случаях, когда речь идёт о коммерческом учёте электроэнергии.

Популярные статьи  Допустимое отклонение напряжения — нормативные значения, причины

Чаще всего ТН имеет несколько вторичных обмоток различного назначения, класс точности которых отличается. Класс точности обмоток, нагрузкой которых являются цепи измерения, может быть от 0.1 до 3.0, в зависимости от допустимой погрешности измерения. Для питания цепей защиты и автоматики применяются обмотки класса 3Р или 6Р.

Выбор конструкционных решений и материалов, из которых изготавливаются элементы ТН, нацелен на решение именно этой задачи.

Что касается силовых трансформаторных установок, их функция заключается в преобразовании электрической энергии с минимальными потерями, в ходе которого фазовый угол исходной синусоиды U практически всегда изменяется.

Кстати, это является причиной запрета на работу в параллельном режиме линий электропередачи одного класса, приходящих с разных подстанций, так как угол сдвига по фазе у них, как правило, различный.

Режим работы.

Силовой трансформатор может работать как в режиме повышения, так и в режиме понижения, ТН предназначен только для понижения первичных параметров сети, то есть, питающей является обмотка ВН, нагрузка всегда подключается к выводам НН.

Это вытекает из основного назначения ТН, обеспечивающего цепи измерения и защит пониженным значением U.

Этот показатель силовых трансформаторов может исчисляться сотнями мегаватт, предельная же мощность ТН составляет порядка 1кВА. Как видно, величины несопоставимы. Для ТН мощность важна лишь с точки зрения её влияния на точность измерения.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Силовые трансформаторы характеризуются:

  • мощностью;
  • значением напряжений высоковольтной и низковольтной обмоток;
  • типом соединения и количеством катушек.

Для удобства классификации все силовые трансформаторы разбиты на 9 габаритных групп по своим основным характеристикам. Так, силовые трансформаторы с мощностью от 4 до 100 кВА и напряжением не выше 35 кВ, входят в первую группу.

Трансформаторы, у которых мощность выше 200000 кВА, а напряжение от 35 до 330 кВ, входят в 8-ю группу. Более мощные силовые трансформаторы находятся в 9-й группе.

Кроме мощности важной характеристикой является количество и исполнение обмоток. Большинство силовых трансформаторов имеют две трехфазных обмотки.. Два основных класса трансформаторов — сухие и масляные, характеризуются способами охлаждения — естественное или принудительное.

Два основных класса трансформаторов — сухие и масляные, характеризуются способами охлаждения — естественное или принудительное.

Отдельное место занимает способ изменения напряжения на низковольтной вторичной обмотке. Таких способов два — регулируемые под нагрузкой и требующие отключения нагрузки. Обычно регулировка выполняется со стороны высоковольтной обмотки, поскольку по ней протекает меньший ток и снижаются требования к контактным группам.

Такое решение также увеличивает точность регулировки, поскольку для переключения на одну и ту же величину, количество витков обмотки высокого напряжения больше.

Регулировка с отключением нагрузки (переключатель без возбуждения — ПБВ) конструктивно проще, но имеет небольшой предел изменения напряжения — не больше ± 5% и требует полного отключения питания и нагрузки во время переключения. Более сложно выполняется регулировка под нагрузкой — РПН, но там гораздо больший предел регулирования — вплоть до 16 % в обе стороны.

Следующая характеристика силовых трансформаторов — конструктивные особенности и климатическое исполнение. Основным параметром здесь является степень защиты электрооборудования.

Особенности и основные параметры

Устройство и монтаж силовых трансформаторов предполагает размещение станции на стационарной, специально подготовленной площадке. Фундамент сооружения должен быть прочным. На грунте при этом могут монтироваться катки и рельсы.

Внутри металлического корпуса располагаются электрические установки. Он выполнен в виде герметичного бака. Внутренние системы закрывает крышка. Чаще всего применяются масляные разновидности. Они имеют особые технические характеристики. Внутри короба такого агрегата находится масло специального типа. Оно обладает особыми диэлектрическими качествами. Масло отводит излишнее тепло от деталей системы в процессе повышенной токовой нагрузки. Однако есть и другие варианты охладительных систем.

Основными характеристиками, влияющими на функционирование установки, являются:

  • Количество катушек и тип их соединения.
  • Мощность.
  • Значение напряжения обмоток.

Сегодня в системах обеспечения электричеством различных объектов чаще встречаются агрегаты с двумя трехфазными обмотки. Только для бытовой сети применяются однофазные установки. Трехфазный силовой трансформатор распространен больше в сетях электрокоммуникаций.

Система регулировки бывает двух типов. В первом случае необходимо отключать питание перед проведением настройки, а во втором – нет. Регулировка выполняется со стороны обмотки высоковольтного типа. По ней движется меньший ток. Такой тип регулировки позволяет выполнять точную настройку.

Конструкция, предполагающая отключение нагрузки, проще. Однако ее предел изменения небольшой. Регулировка требует полного отключения прибора от сети.

Применение

Квалифицированный специалист будет настаивать именно на покупке такого оборудования для использования в быту и на производстве. Это объясняется простотой работы устройства, его относительной доступностью и безопасностью, а принцип защиты этого прибора от поражения человека электрическим током известен даже школьникам из уроков физики по технике безопасности и охране труда.

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенностиСхема разделительного трансформатора

Если спросить специалиста, для чего нужно такое устройство, то все просто: оно работает в условиях повышенной электроопасности, на опасных предприятиях и производствах, во влажных помещениях – банях, саунах, ваннах, и даже в громкоговорителях и станочном оборудовании его применение очень широко.

Если собираетесь делать в доме ремонт, то для использования теплого пола просто необходимо установить УЗО. Вообще, к любому вопросу, связанному с электричеством нужно подходить очень серьезно. Для установки электрооборудования в помещениях с большой влажностью (ванны, сауны и др.) существуют строгие правила по технике безопасности и правилам устройства электроустановок. Перед установкой оборудования требуется пригласить для консультации специалиста.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности
Рисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенности
Рисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Популярные статьи  Что такое время расцепления (применительно к автоматическому выключателю)

Если k > 1, то трансформатор повышающий, а при 0 < k < 1 – понижающий. Например, когда число витков, из которых состоит первичная обмотка, в три раза меньше количества вторичных витков, то k = 1/3, тогда U2 = 1/3 U1.

Режимы работы

Силовой трансформатор может работать в трех режимах:

  • в состоянии холостого хода;
  • в режиме нагрузки;
  • в короткозамкнутом режиме.

Поскольку в цепи разомкнутой вторичной обмотки отсутствует ток, то в таком состоянии по первичной обмотке циркулирует ток холостого хода. Параметры этого тока используют при расчетах КПД, определяют коэффициент трансформации, находят потери в сердечнике.

Основным рабочим режимом трансформатора является состояние, когда к его второй обмотке подключена номинальная нагрузка. Первичный ток можно выразить через результирующую тока холостого хода и расчетного тока сопротивления нагрузки.

В режиме короткого замыкания вторичной обмотки, вся мощность концентрируется в цепях обмоток. В таком состоянии можно определить потери, расходуемые на нагревание проводов в обмотках.

Принцип действия и режимы работы

Простой трансформатор снабжен сердечником из пермаллоя, феррита и двумя обмотками. Магнитопровод включает комплект ленточных, пластинчатых или формованных элементов. Он передвигает магнитный поток, возникающий под действием электричества. Принцип работы силового трансформатора заключается в преобразовании показателей силы тока и напряжения с помощью индукции, при этом постоянной остается частота и форма графика движения заряженных частиц.

В трансформаторах повышающего типа схема предусматривает повышенное напряжение на вторичной обмотке по сравнению с первичной катушкой. В понижающих агрегатах входной вольтаж выше выходного показателя. Сердечник со спиральными витками располагается в емкости с маслом.

При включении переменного тока на первичной спирали образуется переменное магнитное поле. Оно замыкается на сердечнике и затрагивает вторичную цепь. Возникает электродвижущая сила, которая передается подключенным нагрузкам на выходе трансформатора. Функционирование станции проходит в трех режимах:

  1. Холостой ход характеризуется разомкнутым состоянием вторичной катушки и отсутствием тока внутри обмоток. В первичной спирали течет электричество холостого хода, составляющее 2-5% номинального показателя.
  2. Работа под нагрузкой проходит с подключением питания и потребителей. Силовые трансформаторы показывают энергию в двух обмотках, работа в таком регламенте является распространенной для агрегата.
  3. Короткое замыкание, при котором сопротивление на вторичной катушке остается единственной нагрузкой. Режим позволяет выявить потери для разогрева обмоток сердечника.

Режим холостого хода

Электричество в первичной спирали равно значению переменного намагничивающего тока, вторичный ток показывает нулевые показатели. Электродвижущая сила начальной катушки в случае ферромагнитного наконечника полностью замещает напряжение источника, отсутствуют нагрузочные токи. Работа на холостом ходу выявляет потери на мгновенное включение и вихревые токи, определяет компенсацию реактивной мощности для поддержания требуемого вольтажа на выходе.

В агрегате без ферромагнитного проводника потерь на изменение магнитного поля нет. Сила тока холостого режима пропорциональна сопротивлению первичной обмотки. Способность противостоять прохождению заряженных электронов трансформируется при изменении частоты тока и размера индукции.

Работа при коротком замыкании

На первичную катушку поступает небольшое переменное напряжение, выходы вторичной спирали накоротко соединены. Показатели вольтажа на входе подбирают так, чтобы ток короткого замыкания соответствовал расчетному или номинальному значению агрегата. Размер напряжения при коротком замыкании определяет потери в катушках трансформатора и расход на противодействие материалу проводника. Часть постоянного тока преодолевает сопротивление и преобразуется в тепловую энергию, сердечник греется.

Напряжение при коротком замыкании рассчитывается в процентном отношении от номинального показателя

Параметр, полученный при работе в этом режиме, является важной характеристикой агрегата. Умножив его на ток короткого замыкания, получают мощность потерь

Рабочий режим

При подсоединении нагрузки во вторичной цепи появляется движение частиц, вызывающее магнитный поток в проводнике. Оно направлено в другую сторону от потока, продуцируемого первичной катушкой. В первичной обмотке происходит разногласие между электродвижущей силой индукции и источника питания. Ток в начальной спирали повышается до того времени, когда магнитное поле не приобретет первоначальное значение.

Магнитный поток вектора индукции характеризует прохождение поля через выбранную поверхность и определяется временным интегралом мгновенного показателя силы в первичной катушке. Показатель сдвигается по фазе под 90˚ по отношению к движущей силе. Наведенная ЭДС во вторичной цепи совпадает по форме и фазе с аналогичным показателем в первичной спирали.

Watch this video on YouTube

Принцип работы

Работа СТ осуществляется на законах электротехники. СТ ничем не отличаются от обыкновенного трансформатора. Проходящий в первичной обмотке ток изменяется во временном диапазоне гармониками. Он создаёт в магнитопроводах мощный поток магнитных полей. Индукция проникает сквозь витки вторичной обмотки, создаётся электродвижущая сила.

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенностиПринцип работы трансформатора

Съём нагрузок происходит с проходных изоляторов вторичной обмотки на крыше трансформатора. Параметры тока вторичной обмотки держат не выше расчётной величины. В таком состоянии силовые установки работают месяцами, продолжительное время. Преобразуется 1 потенциал амплитуды низкого потенциала (6 – 10 кВ) электричества в высокий класс амплитуды (35, 110, 220, 500, 1100 кВ).

В рабочем режиме СТ подключён шинами РУ, линией электропередачи на нагрузку потребителей энергии. Без отбора мощности происходит повышение частоты электрического тока. СТ работающие в группе разгружены, близки к режимам работы на холостом ходу. При отборе мощности потребителями уменьшается частота электрического тока, трансформатор грузится на 100 – 140% мощность. При стабилизации частоты 50 + (0,5-1%) силовые установки переводятся на стабильный номинальный режим работы. В период испытаний он кратковременно включается на режимы коротких замыканий. Проверяются 99,99% электрических характеристик агрегата, проводится наладка режимов его работы.

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенностиРежим короткого замыкания

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К>1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Силовые трансформаторы: что это такое, назначение, классификация и конструктивные особенностиФормула по вычислению коэффициента трансформации

где:

  • U1 и U2 – ВН и НН напряжения,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки.
Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: