Правила (законы) Кирхгофа простыми словами

Основы электротехники и электроники: Курс лекций , страница 3

При свертке параллельных ветвей эквивалентное сопротивление всегда меньше наименьшего из сворачиваемых.

Если параллельно соединены n

одинаковых сопротивлений (Рис. 3.3 ), эквивалентное сопротивление вn раз меньше сопротивления любой из ветвей.

Если на участке цепи параллельно соединены лишь два элемента (Рис. 3.4

), выражение (3.2) упрощается. В этом случае эквивалентное сопротивление можно определить как отношение произведения двух сопротивлений к их сумме:

4. ОСНОВНЫЕ ЗАКОНЫ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

К основным законам электрических цепей относятся закон Ома и законы Кирхгофа.

Закон Ома

Если в ветви не содержится ЭДС, к ней применим уже известный закон Ома для пассивного участка цепи (1.1). Его можно сформулировать и следующим образом. Ток в ветви, не содержащей ЭДС, равен падению напряжения в ветви, деленному на сопротивление ветви (Рис. 4.1

):

Закон Ома для ветви, содержащей ЭДС, позволяет найти ток этой ветви по известной разности потенциалов на концах ветви. Ток в ветви, содержащей ЭДС, равен дроби, знаменатель которой – это сопротивление ветви. В числителе дроби – напряжение на концах ветви плюс алгебраическая сумма ЭДС, заключенных между концами ветви. С плюсом берутся напряжения и ЭДС, направление которых совпадает с направлением тока, с минусом – противоположные.

Формулировка правил

Каждое правило Кирхгофа обладает универсальными свойствами. Как первое, так и второе, хоть и не относятся к фундаментальным законам, но твёрдо обоснованы.

Определения

Прежде, чем рассматривать простые принципы и смысл решения СУ (систем уравнений), нужно определиться с применяемыми формулировками. В типологии цепей пользуются следующими понятиями:

  • ветвь;
  • узел;
  • контур.

Всё это – элементы электрической цепи (ЭЦ).

Правила (законы) Кирхгофа простыми словами
Элементы ЭЦ

Часть электроцепи, через которую проходит электричество одной и той же величины, называется ветвью. Место, в котором соединяются три и более ветви, именуют узлом. Обычно на схемах узлы обозначаются крупными точками. Контуром называется путь, по которому протекает электрический ток, проходя через несколько участков ЭЦ, включающих в себя узлы и ветви.

Важно! Ток (I), выходя из одной точки контура и единожды проходя по разветвлениям и узлам, должен обязательно вернуться в начало. Контур – это замкнутая цепь

Узлы и ветви, подлежащие изучаемому в определённый момент контуру, могут входить в состав других контуров: являться общими для нескольких замкнутых ЭЦ одновременно.

Первое правило

Первая закономерность Кирхгофа звучит так: «Сумма всех токов в узлах ЭЦ равна нулю». Если придать направление токам, текущим сквозь пересечения проводников, имеющих общий контакт (узел), то можно промаркировать стрелками, указывающими на узел, втекающие токи. Стрелками, имеющими направленность от узла, удобно отмечать вытекающие токи:

I1 + I2 – I3 – I4 – I5 = 0

Правила (законы) Кирхгофа простыми словами
Изображение направления движения электричества

Условно считая, что входящие I имеют плюсовой знак, а выходящие – минусовой, можно перефразировать утверждение. Согласно закону сохранения заряда, алгебраические суммы входящих в узел и выходящих из него I по значению равны.

Правила (законы) Кирхгофа простыми словами
Первый закон

Убедиться в истинности первого правила можно, собрав смешанную схему включения резисторов, в качестве нагрузки, для источника питания U = 3 В.

Включенные в ветви амперметры позволяют визуально зафиксировать значения токов, входящих и выходящих из первого узла. Их алгебраическая сумма (учитывая знаки) будет равна нулю.

Правила (законы) Кирхгофа простыми словами
Схема цепи с установкой амперметров

Второе правило

Его называют правилом напряжений, оно утверждает, что сумма всех E (ЭДС), входящих в контур, равняется сумме падений напряжений на резистивных элементах, при условии, что контур замкнутый:

ΣE = ΣI*R.

Например, для цепи с элементом питания и резистором напряжение на резисторе U = I*R будет равно ЭДС батарейки. По второму определению Кирхгофа выражение будет иметь вид:

E = I*R.

Правила (законы) Кирхгофа простыми словами
Схема с одной ЭДС и одним резистором

По аналогии, если количество резисторов увеличить, то падение напряжения на них распределится так, что в сумме они сравняются со значением ЭДС источника питания:

E = I*R1 + I*R2 + I*R.

Правила (законы) Кирхгофа простыми словами
Включение одной ЭДС и трёх резисторов одного номинала

Объяснение было бы не полным, если не рассмотреть схему с несколькими ЭДС, входящими в контур. В этом случае выражать равенство следует следующим образом:

E1 + E2 = I*R1 + I*R2 + I*R3.

К сведению. При подключении нескольких источников в один контур необходимо соблюдать полярность, выполняя последовательное соединение плюса одного источника с минусом другого, таким образом, значения ЭДС будут суммироваться.

Правила (законы) Кирхгофа простыми словами
Включение двух источников в контур

Закон Кирхгофа в химии

Когда в ходе химреакции система меняет свою теплоёмкость, вместе с тем меняется и температурный коэффициент возникающего в результате этого процесса теплового эффекта. Применяя уравнение, вытекающее из этого закона, можно рассчитывать тепловые эффекты в любом диапазоне температур. Дифференциальная форма этого уравнения имеет вид:

∆Cp = d∆Q/dT,

где:

  • ∆Cp – температурный коэффициент;
  • d∆Q – изменение теплового эффекта;
  • dT – изменение температуры.

Важно! Коэффициент определяет, как изменится тепловой эффект при изменении температуры на 1 К (2730С). Теорема Кирхгофа для термодинамики

Правила (законы) Кирхгофа простыми словами
Теорема Кирхгофа для термодинамики

Третье уравнения Максвелла, а также принцип сохранения зарядов позволили Густаву Кирхгофу создать два правила, которые применяются в электротехнике. Имея данные о значениях сопротивлений резисторов и ЭДС источников питания, можно рассчитывать протекающий I или приложенное U для любого элемента цепи.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Правила (законы) Кирхгофа простыми словами
Рис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Законы Кирхгофа в химии

Кирхгоф в течение долгого времени занимался изучением химии, исследуя тепловые явления. Ученый разработал закон для определения коэффициента температуры при выделении теплоты во время осуществления химической реакции. Оно справедливо как для органических, так и для неорганических веществ. Для описания закона вводятся понятия изобарной и изохорной емкости, обозначаемые символами CP и CV. Закон гласит, что температурный коэффициент химической реакции эквивалентен амплитуде изменения теплоемкости.

Правила (законы) Кирхгофа простыми словами

В дифференциальной форме закон определяет зависимость изменения теплового эффекта от повышения или понижения температуры. Величина теплового эффекта высчитывается при помощи закона Гесса, где учитывается тип реакции. Тепловыделение будет увеличиваться при эндотермических реакциях, уменьшаться — при экзотермических реакциях.

Во время расчета температуры важно учитывать агрегатное состояние, истинную или среднюю теплоемкость, качественный состав и вид веществ, смешанных в растворе. Эти характеристики являются табличными величинами и указаны в химических справочниках

На основе полученных данных составляется уравнение, устанавливающее аналитическую зависимость теплового эффекта от значения температуры.

Расчеты электрических цепей с помощью законов Кирхгофа

Расчет электрических цепей

Для выполнения подобных расчётов существует определённый алгоритм, при котором вычисляются токи для каждой ветви и напряжения на выводах всех элементов, включённых в ЭЦ. Для того чтобы рассчитать любую схему, придерживаются следующего порядка:

  1. Разбивают ЭЦ на ветви, контуры и узлы.
  2. Стрелками намечают предполагаемые направления движения I в ветвях. Произвольно намечают направление, по которому при написании уравнений обходят контур.
  3. Пишут уравнения, применяя первое и второе правило Кирхгофа. При этом учитывают правила знаков, а именно:
  • «плюс» имеют токи, втекающие в узел, «минус» – токи, вытекающие из узла;
  • Е (ЭДС) и снижение напряжения на резисторах (R*I) обозначают знаком «плюс», если ток и обход совпадают по направлению, или «минус», если нет.
  1. Решая полученные уравнения, находят нужные величины токов и падения напряжений на резистивных элементах.
Популярные статьи  Как лучше и правильнее сделать заземление деревянного дачного дома?

Информация. Независимыми узлами называют такие, которые отличаются от других как минимум одной новой веткой. Ветви, содержащие ЭДС именуют активными, без ЭДС – пассивными.

В качестве примера можно рассмотреть схему с двумя ЭДС и рассчитать токи.

Правила (законы) Кирхгофа простыми словами
Пример схемы для расчёта с двумя E

Произвольно выбирают направление токов и контурного обхода.

Правила (законы) Кирхгофа простыми словами
Намеченные направления на схеме

Составляются следующие уравнения с применением первого и второго закона Кирхгофа:

  • I1 – I3 – I4 = 0 – для узла a;
  • I2 + I4 – I5 = 0 – для узла b;
  • R1*I1 + R3*I3 = E1 – контур acef;
  • R4*I4 – R2*I2 – R3*I3 = – E2 – контур abc;
  • R6*I5 + R5*I5 + R2*I2 = E2 – контур bdc.

Уравнения решаются с помощью методов определителей или подстановки. Также можно использовать онлайн-калькуляторы.

Применение законов Кирхгофа (универсальный метод, сложные расчеты системы линейных уравнений).

Порядок расчета цепей, связанный с использованием законов Кирхгофа следующий:

1) Выбирают положительные направления токов в ветвях электрической цепи.

2) Составляют (k-1) независимых уравнений по первому закону Кирхгофа. Уравнения составленные по первому закону Кирхгофа гораздо проще уравнений, составленных по второму закону Кирхгофа. Поэтому их составляют максимально возможное количество.

3) Выбирают (l-k+1-m) независимых контуров электрической цепи. Контуры необходимо выбирать так, чтобы в них вошли все ветви схемы. Контуры взаимно независимы, если каждый последующий выбираемый контур содержит не менее одной новой ветви.

4) Для каждого из выбранных независимых контуров выбирают направления обхода и составляют уравнение по второму закону Кирхгофа.

5)

Правила (законы) Кирхгофа простыми словами
Решают систему из (l-m) линейных уравнений любым удобным способом.

2. Метод контурных токов (универсальный метод)

Расчет сложных электрических цепей методом контурных токов производят в следующей последовательности:

1) Вычерчиваем принципиальную схему и все ее элементы.

2) На схеме выбирают и обозначают контурные токи, таким образом, чтобы по любой ветви проходил хотя бы один выбранный контурный ток (исключая ветви с идеальними источниками тока). Контуры можно выбирать произвольно, лишь бы их число было равно (l-k+1-m), и чтобы каждый новый контур содержал хотя бы одну ветвь, не входящую в предыдущие.

3) Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов используют сдвоенные арабские цифры (или римские).

4) Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов ветвей можно использовать одиночные арабские цифры.

5) По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. Уравнения составлят в следующем виде:

Правила (законы) Кирхгофа простыми словами

6) Решаем любым методом полученную систему относительно контурных токов и определяем их.

7) Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви. При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

3. Метод узловых напряжений (универсальный метод)

Метод узловы́х потенциалов — метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Узловыми напряжениями называют напряжения между каждым из (k-1) узлов и одним произвольно выбранным опорным узлом. Потенциал опорного узла принимается равным нулю. На схеме такой узел обычно отображают как заземленный.

Сущность метода заключается в том, что вначале решением системы уравнений определяют потенциалы всех узлов схемы по отношению к опорному узлу. Далее находят токи всех ветвей схемы с помощью закона Ома.

Расчет сложных электрических цепей методом узловых напряжений производят в следующей последовательности:

1) Вычерчиваем принципиальную схему и все ее элементы.

2) На схеме произвольно выбирают и обозначают опорный узел. В качестве опорного желательно выбирать узел, в котором сходится максимальное количество ветвей.

3) Произвольно задаемся направлением токов всех ветвей и обозначаем их на схеме.

4) Для определения потенциалов остальных (k-1) узлов по отношению к опорному узлу составляем следующую систему уравнений:

Правила (законы) Кирхгофа простыми словами

5) Решаем любым методом полученную систему относительно узловых напряжений и определяем их.

6) Далее для каждой ветви в отдельности применяем закон Ома и находим все токи в электрической цепи.

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу — второй закон этого автора, используемый для анализа электрической схемы. Вторым законом Кирхгофа утверждается, что для последовательного замкнутого контура алгебраическая сумма всех напряжений по кругу любой замкнутой цепи равна нулю. Утверждение обусловлено тем, что контур цепи является замкнутым проводящим путём, где потери энергии исключаются. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равняется нулю:

ΣV = 0

Следует обратить внимание: под термином «алгебраическая сумма» имеется в виду учёт полярностей и признаков источников ЭДС, а также падения напряжений по кругу контура. Эта концепция закона Кирхгофа, известная как «сохранение энергии», как движение по кругу замкнутого контура или схемы, утверждает логику возврата к началу цепи и к первоначальному потенциалу без потери напряжения по всему контуру

Отсюда следует вывод: применяя Второй закон Кирхгофа к определенному элементу электрической схемы, важно обращать особое внимание на алгебраические знаки падений напряжения на элементах (источниках ЭДС), иначе вычисления оборачиваются ошибкой

Одиночный контурный элемент — резистор

Простым примером с резистором предположим — ток протекает в том же направлении, что и поток положительного заряда. В этом случае поток тока через резистор протекает от точки A до точки B. Фактически — от положительной клеммы до отрицательной клеммы. Таким образом, поскольку движение положительного заряда отмечается в направлении аналогичном направлению течения тока, на резистивном элементе зафиксируется падение потенциала, которое приведет к падению минусового потенциала на резисторе (— I * R).

Если же поток тока от точки B до точки A протекает в противоположном направлении относительно потока положительного заряда, тогда через резистивный элемент отметится рост потенциала, поскольку имеет место переход от минусового потенциала к потенциалу плюсовому, что даёт падение напряжения (+ I * R). Таким образом, чтобы правильно применить закон Кирхгофа по напряжению к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление потока тока по замкнутому контуру допустимо определять либо по часовой стрелке, либо против часовой стрелки, и любой вариант допустим к выбору. Если выбранное направление отличается от фактического направления тока, соответствие закону Кирхгофа получится корректным и действительным, но приведет к результату, когда алгебраический расчёт будет иметь знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть ещё один пример с одним контуром цепи на соответствие Второму Закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа утверждает — алгебраическая сумма разностей потенциалов любого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутого контура с двумя резисторами и одним источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одного контура. Соответственно, одинаковый ток протекает через каждый из резисторов.

Популярные статьи  Что такое паяльный жир и как им правильно пользоваться?

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2, дают напряжение по Второму закону Кирхгофа:

V = I * Rs

где: Rs = R1 + R2.

Очевидно: применение Второго закона Кирхгофа к одиночному замкнутому контуру даёт формулу эквивалентного или полного сопротивления для последовательной цепи. Допустимо расширить эту формулу, чтобы найти значения падений потенциалов по кругу контура:

I = V / Rs

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора номинальным сопротивлением 10, 20, 30 Ом, соответственно. Все три резистивных элемента соединены последовательно к 12-вольтовому аккумулятору.

Требуется рассчитать:

  • общее сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитаем общее сопротивление:

Ro = R1 + R2 + R3  =  10Ω + 20Ω + 30Ω = 60Ω

Ток цепи:

I = V / Ro = 12 / 60 = 0,2A (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2A (200 мА)

Падение потенциала на каждом из резисторов:

VR1 = I * R1 = 0.2 * 10 = 2В

VR2 = I * R2 = 0.2 * 20 = 4В

VR3 = I * R3 = 0.2 * 30 = 6В

Таким образом, Второй закон Кирхгофа справедлив, учитывая что индивидуальные падения напряжения, отмеченные по кругу замкнутого контура, в итоге составляют сумму напряжений.

Правила (законы) Кирхгофа простыми словами

Потенциометр — проверяем на практике

Вставьте потенциометр в макетную плату и измерьте сопротивление между центральным выводом и любым другим выводом. После поворота белой ручки (головки) потенциометра сопротивление должно измениться.

Правила (законы) Кирхгофа простыми словами Правила (законы) Кирхгофа простыми словами
Измерения сопротивления потенциометра до поворота ручки. Измерения сопротивления потенциометра после поворота ручки.

Теперь проверим, как потенциометр работает, т.е. делит напряжение. Подключите питание аккумулятора к крайним контактам (ножкам) элемента (полярность не имеет значения), а затем измерьте напряжение между средним контактом и любым крайним контактом. Не забудьте правильно настроить мультиметр. Через некоторое время поворачиваем белую головку (ручку) потенциометра и делаем второе измерение. Полученные результаты могут выглядеть так:

Правила (законы) Кирхгофа простыми словами Правила (законы) Кирхгофа простыми словами
Измерение напряжения на потенциометре. Повторное измерение напряжения.

Демонстрация закона напряжений Кирхгофа в последовательной цепи

Давайте еще раз посмотрим на наш пример последовательной схемы, на этот раз нумеруя точки цепи для обозначения напряжений:

Правила (законы) Кирхгофа простыми словами

Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, вольтметр зарегистрировал бы значение +45 вольт. Для положительных показаний на дисплеях цифровых счетчиков знак «+» обычно не отображается, а скорее подразумевается. Однако для этого урока полярность показаний напряжений очень важна, поэтому я буду явно показывать положительные числа:

E2-1 = +45 В

Когда напряжение указывается с двойным нижним индексом (символы «2-1» в обозначении «E2-1»), это означает напряжение в первой точке (2), измеренное по отношению ко второй точке (1). Напряжение, указанное как «Ecd», будет означать значение напряжения, показанное цифровым мультиметром с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение в точке «c» относительно точки «d».

Правила (законы) Кирхгофа простыми словами

Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего мультиметра на точке впереди и черным измерительным проводом на точке позади, мы получили бы следующие показания:

E3-2 = -10 В

E4-3 = -20 В

E1-4 = -15 В

Правила (законы) Кирхгофа простыми словами

Нам уже должен быть знаком общий для последовательных цепей принцип, утверждающий, что отдельные падения напряжения в сумме составляют общее приложенное напряжение, но измерение падения напряжения таким образом и уделение внимания полярности (математическому знаку) показаний открывает еще один аспект этого принципа: все измеренные напряжения в сумме равны нулю:

В приведенном выше примере контур образован следующими точками в следующем порядке: 1-2-3-4-1. Не имеет значения, с какой точки мы начинаем или в каком направлении движемся при следовании по контуру; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем той же цепи подсчитать напряжения в контуре 3-2-1-4-3:

Этот пример может быть более понятен, если мы перерисуем нашу последовательную схему так, чтобы все компоненты были представлены на одной прямой линии:

Правила (законы) Кирхгофа простыми словами

Это всё та же последовательная схема, только с немного перераспределенными компонентами

Обратите внимание на полярность падений напряжения на резисторах по отношению к напряжению батареи: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторах ориентированы в другую сторону (положительное слева и отрицательное справа). Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей

Другими словами, «толкание», прилагаемое резисторами против потока электрического заряда, должно происходить в направлении, противоположном источнику электродвижущей силы.

Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, если черный провод будет слева, а красный провод – справа:

Правила (законы) Кирхгофа простыми словами

Если бы мы взяли тот же вольтметр и измерили напряжение между комбинациями компонентов, начиная с единственного R1 слева и продвигаясь по всей цепочке компонентов, мы увидели бы, как напряжения складываются алгебраически (до нуля):

Правила (законы) Кирхгофа простыми словами

Тот факт, что последовательные напряжения складываются, не должен быть тайной, но мы заметили, что полярность этих напряжений имеет большое значение в том, как эти значения складываются. При измерении напряжения на R1 – R2 и R1 – R2 – R3 (я использую символ «двойное тире» «–» для обозначения последовательного соединения между резисторами R1, R2 и R3), мы видим, как измеряются бо́льшие значения напряжений (хотя и отрицательные), потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (плюс слева, минус справа).

Сумма падений напряжения на R1, R2 и R3 равна 45 вольт, что соответствует выходному напряжению батареи, за исключением того, что полярность напряжения батареи (минус слева, плюс справа) противоположна падениям напряжения на резисторах, поэтому при измерении напряжения на всей цепочке компонентов мы получаем 0 вольт.

То, что мы должны получить ровно 0 вольт на всей линии, тоже не должно быть тайной. Глядя на схему, мы видим, что крайняя левая часть линии (левая сторона R1, точка номер 2) напрямую соединена с крайней правой частью линии (правая сторона батареи, точка номер 2), что необходимо для завершения схемы.

Поскольку эти две точки соединены напрямую, они являются электрически общими друг с другом. Таким образом, напряжение между этими двумя электрически общими точками должно быть равно нулю.

История

Пополнил ряды немецких ученых Кирхгоф в девятнадцатом столетии, когда в стране, находившаяся на пороге революции индустриальной, требовались новейших технологии. Ученые занимались поиском решений, которые могли бы ускорить развитие промышленности.

Правила (законы) Кирхгофа простыми словами

Активно занимались исследованиями в области электричества, поскольку понимали, что в будущем оно будет широко использоваться. Проблема состояла на тот момент не в том, как составлять электрические цепи из возможных элементов, а в проведении математических вычислений. Тут и появились законы, сформулированные физиком. Они очень помогли.

К узлу подходят 2 провода, а отходит один. Значение тока, текущего от узла, такое же, как сумма его, протекающего по двум остальным проводникам, т.е. идущим к нему. Правило Кирхгофа объясняет, что, при ином раскладе, накапливался бы заряд, но такого не бывает. Все знают, что всякую сложную цепь легко разделить на отдельные участки.

Но, при этом непросто определить путь, по которому он проходит. Тем более, что на различных участках сопротивления не одинаковы, поэтому и распределение энергии не будет равномерным.

В соответствие со Вторым правилом Кирхгофа, энергия электронов на каждом из замкнутых участков электрической цепи равняется нулю – нулю равняется всегда в таком контуре суммарное значение напряжений. Если бы нарушилось данное правило, энергия электронов при прохождении определенных участков, уменьшалась бы или увеличивалась. Но, этого не наблюдается.

Интегральная форма закона Кирхгофа

Прежде, чем записать закон Кирхгофа в интегральной форме введем еще несколько необходимых физических величин, которые характеризует тепловое излучение тела. Интегральная излучательная способность (энергетическая светимость) тела ($E_T$) равна поверхностной плотности мощности теплового излучения тела. Математически определение $E_T$ записывается как:

Популярные статьи  Что такое и как устроена охранная сигнализация?

где $E_=frac<�с><^2>E_< u ,T>$ — излучательная способность тела. $E_T$ также называют энергией излучения всех возможных частот, которые испускаются с единицы поверхности тела на единицу времени. Интегральная излучательная способность ($_$) — абсолютно черного тела равна:

Соотношение между интегральной излучательной способностью серого тела ($^$) и его поглощательной способностью ($A_T$) имеет вид:

Задай вопрос специалистам и получи ответ уже через 15 минут!

Уфимский государственный авиационный технический университет

Расчетно-графическая работа №2

Анализ электрической цепи переменного тока

Порядок выполнения работы:

Анализ электрической цепи синусоидального тока.

Согласно индивидуальному заданию, составить схему электрической цепи, обозначить все элементы, задать направления токов. В распечатке исходных данных сопротивления даны в омах, индуктивности – в миллигенри, емкости – в микрофарадах, модули комплексов ЭДС – в вольтах, аргументы комплексов ЭЖС – в градусах, частота основной гармоники ЭДС (частота синусоидального ЭДС) – 50 герц.

Применим на практике закон Ома

Проверим на практике, действительно ли «работает» закон Ома. Возьмем батарейку или аккумулятор напряжением около 9 вольт. Нам нужно узнать, какой ток будет протекать, если мы замкнем цепь, подключив к ней резистор 10 кОм. Кружок с надписью «mA» на схеме обозначает наш мультиметр (тестер), настроенный на измерение амперов.

Правила (законы) Кирхгофа простыми словами

Вначале проверяем теоретически. Для этого используем известные нам формулы:

U = 9 В, R = 10 кОм , I =?

I = U / R = 9 В / 10000 Ом = 0,0009 A = 0,9 мА

Значит тестер нам должен показать около 0,9 мА . Теперь соберите данную схему на макетной плате. В случае возникновения проблем вы можете использовать пример ниже. Просто будьте осторожны, чтобы не допустить короткого замыкания в цепи при установке компонентов, при замыкании можно повредить аккумулятор.

Не забудьте правильно настроить мультиметр при измерении тока!
Правила (законы) Кирхгофа простыми словами Правила (законы) Кирхгофа простыми словами

Результат измерения в указанной выше цепи составляет 0,95 мА . Почему по расчетам у нас получилась одна цифра, а на практике, после измерения тестером, другая? Не следует забывать, что измерения имеют погрешность. Как вы помните, из предыдущей статьи, все резисторы имеют погрешность около 5%, также, сопротивление щупов и самого мультиметра, и к тому же, батарея или аккумулятор может быть не заражена на все 9В! В среднем получается, что результат верный!

Теперь, для теста, нам нужно проверить, что произойдет, если мы подключим другой резистор, а именно 1 кОм , вместо резистора 10 кОм. Держа в голове закон Ома, мы уже должны предугадать, что подключение резистора с в 10 раз меньшим сопротивлением должно давать в 10 раз больший ток. Проверим:

Правила (законы) Кирхгофа простыми словами

Что такое внутреннее сопротивление?

Внутреннее сопротивление — это параметр, который является общим для каждого источника питания, но о нем часто забывают. Любой реальный источник напряжения можно в простейшем случае смоделировать, как последовательную комбинацию идеального источника и определенного сопротивления.

Проще всего представить, батарейку или аккумулятор, внутри которого, есть резистор.

Такое сопротивление никому не нужно, но с этим ничего не поделать; производители могут только стараться поддерживать это сопротивление на минимально возможном уровне. Это связано с составом контактных сопротивлений, крышек батарей, выводов и т.д. Кроме того, сопротивление может зависеть от температуры, сроков эксплуатации элементов и других факторов.

Правила (законы) Кирхгофа простыми словами

Это сопротивление нельзя точно самим рассчитать и не пытайтесь измерить его мультиметром! Такую информацию может предоставить только производитель батареи

К счастью, это для нас сейчас не важно, самое главное — просто знать о существовании внутреннего сопротивления

Наличие внутреннего сопротивления иллюстрирует очень простой опыт. Давайте измерим напряжение в цепи, при течении тока через резисторы 1 кОм и 10 кОм и без них. Вот очень простая схема измерения:

Правила (законы) Кирхгофа простыми словами Правила (законы) Кирхгофа простыми словами

Примеры измерений:

Правила (законы) Кирхгофа простыми словами Правила (законы) Кирхгофа простыми словами Правила (законы) Кирхгофа простыми словами
Резистор 1k подключен Резистор 10 кОм подключен Без резистора

Как вы можете видеть в приведенном выше примере, увеличивая ток от батареи, мы получаем более низкое напряжение. Это можно прекрасно объяснить так: чем меньше R1 (который представляет собой нагрузку) по сравнению с R2 (которое представляет собой внутреннее сопротивление), тем большее напряжение подается на R2. Для многих измерение без резистора может вызывать недоумение, потому что они думают, что это означает отсутствие сопротивления — это неправильное мышление.

Отсутствие резистора следует понимать как бесконечно большое сопротивление. Так как, в цепи не протекает ток и батарея никак не нагружается, поэтому измеренное напряжение является самым высоким.

Помните, что при зарядке аккумулятора слишком большим током (через резистор с низким сопротивлением), аккумулятор может нагреться и выйти из строя (может произойти утечка электролита)! При потреблении большого тока, используйте источник с достаточно низким внутренним сопротивлением и достаточно большой мощностью.

Вышеупомянутый феномен беспокоит многих новичков, пытающихся запитать свои проекты небольшими батареями (например, 9 В). Они забывают, что высокое потребление тока (например, моторами) вызывает падение напряжения на батарее. Это может помешать работе всей системы.

Зачем нужен делитель напряжения?

В мире электроники популярны датчики, с помощью которых, измеряемые физические значения, считываются путем измерения сопротивления датчика, например, сопротивление аналогового датчика температуры зависит от температуры окружающей среды.

Микроконтроллеры (например, используемые в Arduino) не могут измерять изменения сопротивления. Однако они отлично умеют измерять напряжение.

На сегодняшний день такие делители напряжения в электросхемах не используются. Вы конечно можете использовать такой делитель для питания системы, которая требует 5 В от батареи 9 В. Но вы не должны использовать их для питания, например, средних моторов (хотя это иногда и кажется хорошей идеей), ведь от делителей напряжения невозможно получить большую силу тока! Для питания таких схем с моторами лучше использовать стабилизаторы напряжения, о которых будет рассказано в других статьях.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Правила (законы) Кирхгофа простыми словами
Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Правила (законы) Кирхгофа простыми словами
Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Для использования этой формулы, требуется учитывать знаки

Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: