Электрический ток в жидкостях — теория, электролиз

Введение

С электропроводностью растворов солей в воде (электролитов) связано очень многое в нашей жизни. С первого удара сердца («живое» электричество в теле человека, на 80% состоящем из воды) до автомобилей на улице, плееров и мобильных телефонов (неотъемлемой частью этих устройств являются «батарейки» – электрохимические элементы питания и различные аккумуляторы – от свинцово-кислотных в автомобилях до литий-полимерных в самых дорогих

мобильных телефонах). В огромных, дымящихся ядовитыми парами чанах из расплавленного при огромной температуре боксита электролизом получают алюминий – «крылатый» металл для самолётов и банок для «Фанты». Все вокруг – от хромированной решетки радиатора иномарки до посеребрённой серёжки когда-либо сталкивалось с раствором или расплавом солей, а следовательно, и с электротоком в жидкостях.

Ионная проводимость

В металлах, как вы помните, имеется лишь один тип свободных зарядов — это свободные электроны. В электролитах ситуация иная: здесь возникают свободные заряды двух типов.

1. Положительные ионы, образовавшиеся из атомов металлов или водорода.

2. Отрицательные ионы — атомные или молекулярные кислотные остатки (например, или ), а также гидроксильная группа .

Второе отличие от металлов заключается в том, что носители свободных зарядов в электролите могут иметь заряд, равный по модулю как элементарному заряду , так и целому числу элементарных зарядов . Здесь — валентность атома или группы атомов; например, при растворении медного купороса имеем .

Если внешнего электрического поля нет, то свободные заряды электролита совершают лишь хаотическое тепловое движение наряду с окружающими молекулами. Но при наложении внешнего поля положительные и отрицательные ионы начинают упорядоченное движение.

Поместим в сосуд с электролитом два электрода; один из электродов присоединим к положительной клемме источника тока, а другой — к отрицательной (рис. 5). Когда речь идёт о прохождении тока через электролиты, положительный электрод называют анодом

, а отрицательный —катодом (Имеется народная мудрость для запоминания знаков анода и катода:Андрей — парень положительный, Катька — девка отрицательная ;-)).

Электрический ток в жидкостях — теория, электролиз

Рис. 5. Ионная проводимость электролита

В электрическом поле, возникшем между электродами, положительные ионы электролита устремляются к «минусу» катода, а отрицательные ионы — к «плюсу» анода. Таким образом, электрический ток в электролите образуется в результате встречного движения ионов: положительных — к катоду, отрицательных — к аноду

. Поэтому проводимость электролитов называетсяионной (в отличие от электронной проводимости металллов).

На положительном аноде имеется недостаток электронов. Отрицательные ионы, достигнув анода, отдают ему свои лишние электроны; эти электроны отправляются по цепи к «плюсу» источника.

Наоборот, на отрицательном катоде — избыток электронов. Положительные ионы, придя на катод, забирают у него электроны, и это количество ушедших электронов немедленно восполняется их доставкой на катод с «минуса» источника.

Таким образом, в той части цепи, которая состоит из источника тока и металлических проводников, возникает циркуляция электронов по маршруту «анод источник катод».

Цепь замыкается электролитом, где электрический ток обеспечивается двусторонним движением ионов.

§ 113. Электрический ток в жидкостях. Закон электролиза

Глава 16. Электрический ток в различных средах

Каковы носители электрического тока в вакууме?

Каков характер их движения?

Жидкости, как и твёрдые тела, могут быть диэлектриками, проводниками и полупроводниками. К диэлектрикам относится дистиллированная вода, к проводникам — растворы и расплавы электролитов: кислот, щелочей и солей. Жидкими полупроводниками являются расплавленный селен, расплавы сульфидов и др.

Электролитическая диссоциация. При растворении электролитов под влиянием электрического поля полярных молекул воды происходит распад молекул электролитов на ионы.

Запомни Распад молекул на ионы под влиянием электрического поля полярных молекул воды называется электролитической диссоциацией.

Степень диссоциации — доля в растворённом веществе молекул, распавшихся на ионы.

Степень диссоциации зависит от температуры, концентрации раствора и электрических свойств растворителя.

Важно С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов

Предположите, как можно нарушить состояние динамического равновесия в растворе.

Ионы разных знаков при встрече могут снова объединиться в нейтральные молекулы.

При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.

Ионная проводимость.

Важно Носителями заряда в водных растворах или расплавах электролитов являются положительно и отрицательно заряженные ионы. Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду — аноду, а положительные — к отрицательному — катоду

В результате по цепи пойдёт электрический ток

Если сосуд с раствором электролита включить в электрическую цепь, то отрицательные ионы начнут двигаться к положительному электроду — аноду, а положительные — к отрицательному — катоду. В результате по цепи пойдёт электрический ток.

Запомни Проводимость водных растворов или расплавов электролитов, которая осуществляется ионами, называют ионной проводимостью.

Жидкости могут обладать и электронной проводимостью. Такой проводимостью обладают, например, жидкие металлы.

Электролиз. При ионной проводимости прохождение тока связано с переносом вещества. На электродах происходит выделение веществ, входящих в состав электролитов. На аноде отрицательно заряженные ионы отдают свои лишние электроны (в химии это называется окислительной реакцией), а на катоде положительные ионы получают недостающие электроны (восстановительная реакция).

Жидкости могут обладать и электронной проводимостью. Такой проводимостью обладают, например, жидкие металлы.
Запомни Процесс выделения на электроде вещества, связанный с окислительновосстановительными реакциями, называют электролизом.

От чего зависит масса вещества, выделяющегося за определённое время? Очевидно, что масса m выделившегося вещества равна произведению массы m0i одного иона на число Ni ионов, достигших электрода за время Δt:

m = m0iNi. (16.3)

Масса иона m0i равна:

где М — молярная (или атомная) масса вещества, a NA — постоянная Авогадро, т. е. число ионов в одном моле.

Число ионов, достигших электрода, равно:

где Δq = IΔt — заряд, прошедший через электролит за время Δt; q0i — заряд иона, который определяется валентностью n атома: q0i = пе (е — элементарный заряд). При диссоциации молекул, например КВr, состоящих из одновалентных атомов (n = 1), возникают ионы К+ и Вr-. Диссоциация молекул медного купороса ведёт к появлению двухзарядных ионов Си2+ и SO2-4 (n = 2). Подставляя в формулу (16.3) выражения (16.4) и (16.5) и учитывая, что Δq = IΔt, a q0i = nе, получаем

Популярные статьи  Возможен ли монтаж подсветки из 10-ти светодиодных фонарей на 4.5 вольта каждый от сети 220 вольт?

Окончание параграфа >>>

Термоэлектронная эмиссия

Как свободные электроны могут появиться в вакууме? Благодаря явлению термоэлектронной эмиссии, открытому Томасом Эдисоном в 1879 году.

Определение. Термоэлектронная эмиссия

Термоэлектронная эмиссия — испускание электронов из металла при его нагревании.  

Металлы являются наилучшими проводниками, так как имеют свободные электроны, которые иногда еще называют электронным газом. При нагревании металла энергия электронов (измеряется в электронвольтах) увеличивается и они могут «вырваться» из металла. Для того, чтобы вылететь из металла, электрон должен обладать энергией, превышающей работу выхода электронов для этого металла.

Aвых=E-μ

Здесь Aвых — работа выхода, которую нужно преодолеть электрону, E — его энергия, μ — энергия Ферми.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

Виды газовых разрядов

Искровой разряд – это прерывистый самостоятельный лавинообразный разряд в газе, вызванный ударной ионизацией и сопровождающийся треском и ярким свечением. Искровой разряд возникает при условии, когда мощность источника недостаточна для поддержания непрерывного разряда.

Электрический ток в жидкостях — теория, электролиз

Дуговой разряд впервые был получен в 1802 году российским академиком В. В. Петровым. При соприкосновении электродов в цепи возникает сильный ток короткого замыкания, что приводит к сильному нагреванию электродов. Затем электроды постепенно раздвигаются. Ток продолжает идти через межэлектродное пространство, заполненное высокотемпературной плазмой. Концы электродов раскаляются до 3000-4000 градусов и начинают испаряться.

Дуговой разряд является самостоятельным разрядом в газе и происходит за счет энергии термоэлектронной эмиссии с катода. Является источником сильного светового и ультрафиолетового излучения.

Тлеющий разряд возникает в разряженном газе при сравнительно невысоком напряжении в виде светящегося газового столба. Тлеющий разряд вызывается ударной ионизацией и выбиванием электронов из катода положительными ионами (вторичная ионизация).

Свечение при тлеющем разряде объясняется тем, что при рекомбинации молекул газа высвобождается энергия в виде светового излучения. Свечение будет иметь разные цвета в зависимости от вида газа.

Коронный разряд возникает в сильно неоднородных электрических полях. Например, вблизи острия напряженность электрического поля настолько велика, что ионизация электронным ударом возможна даже при атмосферном давлении. В этой области возникает характерное сферическое свечение в виде короны.

Электрический ток в жидкостях — теория, электролиз

Практическое применение электролиза

Первое практическое применение электролиза произошло в 1838 году русским ученым Якоби. С помощью электролиза он получил оттиск фигур для Исаакиевского собора. Такое применение электролиза получило название гальванопластика. Другой сферой применения является гальваностегия – покрытие одного металла другим (хромирование, никелирование, золочение и т.д., рис. 5)

Рис. 5. Примеры гальванопластики и гальваностегии соответственно

Также электролиз применяется в металлургии для выплавки редких металлов в чистом виде (алюминий, натрий, кальций, магний).

К занятию прикреплен файл  «Это интересно!». Вы можете скачать файл  в любое удобное для вас время.

  • http://www.umnik-umnica.com/ru/school/physics/10-klass/
  • https://www.youtube.com/watch?v=2YmCHhOQzUY
  • https://www.youtube.com/watch?v=1ky9UjwZE0w
  • https://www.youtube.com/watch?v=Gmpo8xQMzhQ
     

Электрический ток в жидкостях. Движение зарядов, анионы катионы.

Электрический ток в жидкостях обусловлен движением положительных и отрицательных ионов. В отличии от тока в проводниках где движутся электроны. Таким образом, если в жидкости нет ионов, то она является диэлектриком, например дистиллированная вода. Поскольку носителями заряда являются ионы, то есть молекулы и атомы вещества, то при прохождении через такую жидкость электрического тока неизбежно приведет к изменению химических свойств вещества.

Откуда же в жидкости берутся положительные и отрицательные ионы. Скажем сразу, что не во всех жидкостях способны образоваться носители зарядов. Те, в которых они появляются, называются электролитами. К ним относятся растворы солей кислоты и щелочи. При растворении соли в воде, к примеру, возьмем поваренную соль NaCl, она распадается под действием растворителя, то есть воды на положительный ион Na называемый катионом и отрицательный ион Cl называемым анионом. Процесс образования ионов называется электролитическая диссоциация.

Проведем опыт, для него нам понадобится стеклянная колба два металлических электрода амперметр и источник постоянного тока. Колбу мы заполним раствором поваренной соли в воде. Потом поместим в это раствор два электрода прямоугольной формы. Электроды подключим к источнику постоянного тока через амперметр.

Рисунок 1 — Колба с раствором соли

При включении тока между пластинами появится электрическое поле под действием, которого начнут двигаться ионы соли. Положительные ионы устремятся к катоду, а отрицательные к аноду. В тоже время они будут совершать хаотическое движение. Но при этом под действием поля к нему добавится еще и упорядоченное.

В отличии от проводников в которых движутся только электроны то есть один вид зарядов в электролитах перемещаются два вида зарядов. Это положительные и отрицательные ионы. Движутся они встречно друг другу.

Когда положительный ион натрия достигнет катода, он получит недостающий электрон и превратится в атом натрия. Аналогичный процесс произойдет и с ионом хлора. Только при достижении анода ион хлора отдаст электрон и превратится в атом хлора. Таким образом, во внешней цепи поддерживается ток за счет движения электронов. А в электролите ионы как бы переносят электроны от одного полюса к другому.

Электрическое сопротивление электролитов зависит от количество образовавшихся ионов. У сильных электролитов при растворении уровень диссоциации очень высок. У слабых низкий. Также на электрическое сопротивление электролита влияет температура. При ее увеличении снижается вязкость жидкости и тяжелые, и неповоротливые ионы начинают двигаться быстрее. Соответственно сопротивление уменьшается.

Если раствор поваренной соли заменить на раствор медного купороса. То при пропускании тока через него, когда катион меди достигнет катода и получит там недостающие электроны, он восстановится до атома меди. И если после этого вынуть электрод, то можно обнаружить на нем налет меди. Этот процесс называется электролизом.

Электролитическая диссоциация

Если вещество, молекулы которого образованы ионной связью расплавить, то сперва молекулы за счет температуры удаляются друг от друга все дальше, а потом наступает определенный момент, когда и ионы, образующие молекулы, тоже удаляются настолько далеко друг от друга, что им становится возможным образовывать ионные связи с другими ионами. Таким образом, в расплаве вещества за счет температуры появляются подвижные заряженные частицы, способные двигаться под действием внешнего электрического поля.

Воздействие температуры можно заменить воздействием растворителя. Если молекулы растворителя являются диполем (например, обычная вода), то эти молекулы могут взаимодействовать с ионами кристаллической решетки растворяемого вещества, унося их в раствор. В растворе появляются заряженные частицы, способные двигаться под действием электрического поля. Происходит это, как правило, при более низких температурах. Например, если расплав поваренной соли требует температуры более 800⁰C, то растворение соли происходит при комнатной температуре.

Популярные статьи  Как подключить стиральную машину и проточной водонагреватель к одному проводу?

Распад вещества на ионы с образованием проводящего электролита под действием температуры или растворителя называется электролитической диссоциацией.

Электрический ток в жидкостях — теория, электролизРис. 3. Ионная электролитическая диссоциация.

Таким образом, жидкость может проводить электрический ток, если она, либо сама состоит из ионов, либо является раствором вещества с ионной связью.

Что мы узнали?

Электрический ток в жидкостях может существовать, если жидкость содержит свободные заряженные частицы – ионы. Такие частицы могут существовать, либо если молекулы жидкости состоят из ионов, либо если в жидкости растворено вещество с ионной связью (например, расплав или раствор поваренной соли). Жидкость, не содержащая ионов (например, химически чистая вода) электрический ток не проводит.

  1. /10

    Вопрос 1 из 10

Электрический ток в жидкостях. Закон электролиза

Подробности
Просмотров: 405

Жидкости по степени электропроводности делятся на:

— диэлектрики (например, дистиллированная вода),

— проводники (например, электролиты),

— полупроводники (например, расплавленный селен).

Электролит — это проводящая жидкость (растворы кислот , щелочей, солей и расплавленные соли).

Электролитическая диссоциация (разъединение) — при растворении в результате теплового движения происходят столкновения молекул растворителя и нейтральных молекул электролита.

Молекулы распадаются на положительные и отрицательные ионы.

Например, растворение медного купороса в воде.

Электрический ток в жидкостях — теория, электролиз

Ион — это атом или молекула, потерявшая или присоединившая к себе один или несколько электронов.
Существуют положительные (катионы) и отрицательные (анионы) ионы.

Рекомбинация ионов

Наряду с диссоциацией в электролите одновременно может происходить процесс восстановления ионов в нейтральные молекулы.

Между процессами электролитической диссоциации и рекомбинации при неизменных условиях устанавливается динамическое равновесие.

Степень диссоциации — это доля молекул, распавшихся на ионы.
Степень диссоиацции возрастает с увеличением температуры и зависит от концентрации раствора и от электрических свойств растворителя.

Электропроводимость электролитов

Ионная проводимость — это упорядоченное движение ионов под действием внешнего электрического поля.
Ионная проводимость существует в электролитах, где прохождение электрического тока связано с переносом вещества.

Электронная проводимость — это также в небольшой мере присутствует в электролитах, но в основном характеризует электропроводимость жидких металлов.
Ионы в электролите движутся хаотически до тех пор, пока в жидкость не опускаются электроды, между которыми существует разность потенциалов.
Тогда на хаотическое движение ионов накладывается их упорядоченное движение к соответствующим электродам и в электролите возникает электрический ток.

Зависимость сопротивления электролита от температуры

Температурная зависимость сопротивления электролита объясняется в основном изменением удельного сопротивления.

где альфа — температурный коэффициент сопротивления.
Для электролитов всегда

Поэтому

Сопротивление электролита можно рассчитать по формуле:

Явление электролиза

Явление электролиза сопровождает прохождение элктрического тока через жидкость.
При электролизе происходит выделение на электродах веществ, входящих в электролиты.
Положительно заряженные анионы под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные катионы — к положительному аноду.
На аноде отрицательные ионы отдают лишние электроны (окислительная реакция)
На катоде положительные ионы получают недостающие электроны (восстановительная реакция).

Закон электролиза

Закон электролиза был открыт в 1833году Майклом Фарадеем.

Электрический ток в жидкостях — теория, электролиз

Закон электролиза определяет массу вещества, выделяемого на электроде при электролизе за время прохождения электрического тока.

k — электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.
Зная массу выделившегося вещества, можно определить заряд электрона.

Применение электролиза:
— получение чистых металлов (очистка от примесей);
— гальваностегия, т.е. получение покрытий на металле (никелирование, хромирование и т.д. );
— гальванопластика, т.е. получение отслаиваемых покрытий (рельефных копий).

Следующая страница «Электрический ток в газах. Плазма»

Назад в раздел «10-11 класс»

Электрический ток в различных средах — Класс!ная физика

Электронная проводимость металлов. Зависимость сопротивления проводника от температуры. Сверхпроводимость —
Электрический ток в полупроводниках. Р-n переход. Полупроводниковые приборы —
Электрический ток в вакууме. Вакуумный диод. Электронно-лучевая трубка —
Электрический ток в жидкостях. Закон электролиза —
Электрический ток в газах —
Контрольные вопросы к зачету по теме: Электрический ток в различных средах

Законы физики и ток в жидкостях

Электричество в наших домах и технике, как правило, не передается в металлических проволоках,. В металле электроны могут переходить от атома к атому, и, таким образом нести отрицательный заряд.

Как жидкости, они приводятся в виде электрического напряжения, известного как напряжение, изменяемом в единицах – вольт, в честь итальянского ученого Алессандро Вольта.

Видео: Электрический ток в жидкостях: полная теория

Также, электрический ток течет от высокого напряжения в низкое напряжение и измеряется в единицах, известных как ампер, названных по имени Андре-Мари Ампера. И согласно теории и формулы, если увеличить напряжение тока, то его сила также увеличится пропорционально. Это соотношение известно как закон Ома. Как пример, виртуальная ампермерная характеристика ниже.

Рисунок: зависимость тока от напряжения

Закон Ома (с дополнительными подробностями относительно длины и толщины проволоки), как правило, является одним из первых вещей, преподаваемых в классах, изучающих физику, многие студенты и преподаватели поэтому рассматривают электрический ток в газах и жидкостях как основной закон в физике.

Для того чтобы увидеть своими глазами движение зарядов, нужно приготовить колбу с соленой водой, плоские прямоугольные электроды и источники питания, также понадобится ампермерная установка, при помощи которой будет проводиться энергия от сети питания к электродам.

Рисунок: Ток и соль

Пластины, которые выступают проводниками необходимо опустить в жидкость, и включить напряжение. После этого начнется хаотичное перемещение частиц, но как после возникновения магнитного поля между проводниками, этот процесс упорядочится.

Как только ионы начнут меняться зарядами и объединяться, аноды станут катодами, а катоды – анодами. Но здесь нужно учитывать и электрическое сопротивление. Конечно, не последнюю роль играет теоретическая кривая, но основное влияние – это температура и уровень диссоциации (зависит от того, какие носители будут выбраны), а также выбран переменный ток или постоянный

Завершая это опытное исследование, Вы можете обратить внимание, что на твердых телах (металлических пластинах), образовался тончайший слой соли

Электропроводность жидкостей и газов

Сначала рассмотрим электрический ток в жидкостях.

В § 8-а мы обсудили распад молекул серной кислоты на отдельные ионы при её растворении в воде: ионы водорода и сульфат-ионы. Порождать ионы могут и молекулы других веществ, например поваренной соли. При её растворении или расплавлении происходит распад электронейтральных молекул на заряженные ионы:NaCl → Na+ + Cl –. Поместим раствор или расплав соли в ванну, в которой есть электроды, соединённые с «+» и «–» источника электроэнергии (см. рисунок). Под действием сил электрического поля, существующего между электродами, ионы натрия и хлора начнут встречное движение.

Популярные статьи  Пройти онлайн тест по электробезопасности (3 группа допуска)

Убедиться, что жидкости могут проводить ток, можно простым опытом: включив лампочку в разрыв провода, идущего от ванны к источнику. Однако опыты, подтверждающие движение ионов, находятся «на стыке» физики и ещё не изученных вами разделов химии. Поэтому вам придётся поверить нам на слово и запомнить: электропроводность жидкостей (кроме тех, молекулы которых состоят из одного атома) обусловлена встречным движением их положительных и отрицательных ионов.

Такое перемещение ионов внутри жидкости обычно приводит к химическим реакциям на поверхностях обоих электродов.

Рассмотрим теперь электрический ток в газах.

Проделаем опыт с прибором «Разряд». Он служит для электризации тел, подобно заряженным палочкам из эбонита или стекла, но не «одноразово», а непрерывно длительное время (рис.а). Поэтому соединённые с ним тела приобретают гораздо больший заряд, чем при электризации палочками.

Присоединим к работающему «Разряду» два металлических шара, между которыми промежуток воздуха. Лепестки электроскопа «поднимутся», отмечая увеличение заряда шаров (рис.а). Через несколько секунд шары наэлектризуются настолько сильно, что проскочит искра, и лепестки электроскопа «опадут» (рис.б). Это показывает, что воздух между шарами, бывший диэлектриком, стал проводником на короткое время проскакивания искры.

Возникает вопрос: почему искры проскакивают только время от времени, превращая воздух из диэлектрика в проводник, и как это вообще происходит? Во-первых, лепестки электроскопа после опадания поднимаются плавно, свидетельствуя о постепенном нарастании зарядов шаров. По сути, они представляют собой конденсатор, которому требуется некоторое время, чтобы накопить заряд.

Во-вторых, в физике и химии установлено, что ионизация веществ может происходить не только при растворении и расплавлении, но и под действием электрического поля.

Сильное поле способно оторвать от молекулы электрон(ы), поэтому она становится ионом (см. рисунок). Под действием сил поля положительные ионы устремляются к отрицательно заряженному шару, а электроны – к положительному, по пути «выбивая» новые электроны из других молекул. Так возникает искра, поскольку количество заряженных частиц лавинообразно нарастает (см. рисунок ниже).

Встречное движение ионов и электронов в искре – это электрический ток. Его и сопутствующие явления называют искровым разрядом

. Слово «разряд» подчёркивает, что заряды шаров уменьшаются (за счёт переноса ионами положительного заряда на отрицательно заряженный шар, а электронами – отрицательного заряда на положительно заряженный шар). Резко «опадающие» лепестки электроскопа показывают, что разряд шаров происходит очень быстро. Как только сильное поле между шарами исчезает, искра прекращается. В физике это объясняют тем, что электроны и ионырекомбинируют – объединяются в нейтральные молекулы, и воздух снова становится диэлектриком.

Электрический ток в жидкостях — теория, электролиз

Таким образом, электропроводность газов обусловлена встречным движением ионов и электронов.

Наряду с искровым разрядом, схему которого мы рассмотрели, в газах могут происходить дуговой, тлеющий и коронный разряды. Предлагаем вам самостоятельно подготовить доклады на эти темы, используя интернет-ресурсы и литературу.

Эксперимент первый. Выбор поглотителя

Через сутки после загрузки воды в кювету темновой ток (ток в цепи при отключенном источнике света) становится практически постоянным. Почему это происходит, пока неясно.

Сколь бы маломощна ни была лампа, играющая роль источника света, но нагрев жидкости в кювете все-таки возможен. А значит, нужен термометр, позволяющий контролировать и этот процесс. Конструкция кюветы позволяет установить небольшой градусник, а лучше термопару, без особых проблем.

Электрический ток в жидкостях — теория, электролизРис. 3

К фототоку можно относиться двояким образом. Прежде всего, это процесс изменения тока в цепи, обусловленный оптическим облучением. Количественная характеристика этого процесса может тоже именоваться фототоком: можно договориться, что это ток в цепи в определенный момент времени минус ток в цепи в момент включения источника света.

Первое измерение проводим без поглотителя; в рабочем журнале набор чисел отмечаем перечеркнутой букой П

. В глаза бросаются две особенности: возрастание тока в цепи начинается почти сразу же после включения источника света и прекращается сразу же после выключения лампы (рис

3). При этом, что важно, температура жидкости еще сравнительно долго продолжает расти (рис

4). Появляется убежденность, что такое изменение фототока невозможно объяснить ни нагревом жидкости, ни влиянием света на протекание химических реакций. То и другое в подавляющем большинстве случаев — сравнительно медленные процессы.

Электрический ток в жидкостях — теория, электролизРис. 4

Дальше начинается самое интересное и не противоречащее ни здравому смыслу, ни известным и устоявшимся представлениям. Использование в качестве поглотителя стеклотекстолита толщиной 2 мм с нанесенным сверху слоем меди толщиной 0,1 мм (П

= Cu+) подавляет эффект лишь наполовину (см. рис. 3). Гораздо сильнее действует гофрированный картон толщиной 3 мм с наклеенной сверху алюминиевой пленкой толщиной 0,05 мм (П = Al+). В этом нет ничего странного: медь обладает большой теплоемкостью, а картон — низкой теплопроводностью. При первом поглотителе максимальное изменение температуры составило 1,5°C, а при втором — около 0,5°C

Следует обратить внимание на еще одно важное обстоятельство: в начале экспозиции фототок растет, а температура жидкости если и увеличивается, то несущественно. Следствие может отставать от причины, но не наоборот

Конечно же, все три зависимости соответствуют одному и тому же положению лампы. При отсутствии поглотителя средняя освещенность поверхности жидкости составила 15000 лк (напомним, что в люксах измеряется освещенность в Международной системе единиц — СИ).

Итак, первый эксперимент, заключающийся в ежеминутных измерениях падения напряжения и температуры в течение нескольких часов, подтвердил предположение о том, что электрический ток в жидкости, по крайней мере частично, имеет фотоэлектрическую природу.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: