Система распределения электроэнергии: определение, состав, примеры

Внешние ссылки [ править ]

Викискладе есть медиафайлы по теме .
В Викиверситете есть учебные ресурсы о
vтеДоставка электроэнергии
Концепции
  • Автоматический контроль генерации
  • Обратное кормление
  • Базовая нагрузка
  • Фактор спроса
  • Контроль скорости падения
  • Экономическая отправка
  • Электроэнергия
  • Управление спросом
  • Возврат энергии на инвестиции
  • Электрическая неисправность
  • Домашнее хранилище энергии
  • Сетка хранилища
  • Сетевой код
  • Сила сетки
  • Загрузить после
  • Орден за заслуги
  • Паспортная мощность
  • Пиковый спрос
  • Фактор силы
  • Качество электроэнергии
  • Исследование потока мощности
  • Перезарядка
  • Частота коммунальных услуг
  • Изменчивость
Источники
Невозобновляемый
  • Каменный уголь
  • Электростанция на ископаемом топливе
  • Натуральный газ
  • Нефть
  • Ядерная
  • Горючие сланцы
Возобновляемый
  • Биомасса
  • Биотопливо
  • Геотермальный
  • Гидро
  • морской
    • Текущий
    • Осмотический
    • Тепловой
    • Приливный
    • Волна
  • Солнечная
  • Ветер
Поколение
  • Мощность переменного тока
  • Когенерация
  • Комбинированный цикл
  • Градирни
  • Индукционный генератор
  • Микро ТЭЦ
  • Микрогенерация
  • Цикл Ренкина
  • Трехфазная электрическая мощность
  • Виртуальная электростанция
Передача и распространение
  • Ответ на спрос
  • Распределенная генерация
  • Динамический спрос
  • Розничная торговля электроэнергией
  • Электрическая система сборных шин
  • Электроэнергетическая система
  • Передача электроэнергии
  • Электрическая сеть
  • Электрический соединитель
  • Постоянный ток высокого напряжения
  • Высоковольтное подключение к берегу
  • Управление нагрузкой
  • Электроэнергия по странам
  • Линия электропередачи
  • Электростанция
  • Хранение энергии
  • Насосная гидро
  • Умная сеть электроснабжения
  • Подстанция
  • Однопроводной возврат на землю
  • Супер сетка
  • Трансформатор
  • Оператор системы передачи (TSO)
  • Башня передачи
  • Полюс
Режимы отказа
  • Blackout (постоянное затемнение )
  • Отключение
  • Черный старт
  • Каскадный отказ
Защитные устройства
  • Прерыватель цепи дугового замыкания
  • Автоматический выключатель утечки на землю
  • Устройство остаточного тока (GFI)
  • Защита энергосистемы
  • Защитное реле
  • Цифровое реле
  • Автоматический выключатель из гексафторида серы
Экономика и политика
  • Фактор доступности
  • Коэффициент мощности
  • Углеродная компенсация
  • Стоимость электроэнергии по источникам
  • Экотакс
  • Энергетические субсидии
  • Зеленый тариф
  • Поэтапный отказ от ископаемого топлива
  • Коэффициент нагрузки
  • Чистый учет
  • Пиговский налог
  • Сертификаты возобновляемой энергии
  • Платежи за возобновляемые источники энергии
  • Политика в области возобновляемых источников энергии
  • Искра / Темнота / Кварк / Распространение коры
Статистика и производство
  • Список секторов электроэнергетики
  • Потребление электроэнергии
Категории
Распределение электроэнергии
Экономика электроэнергии
Технология электростанции
Порталы
Энергия
Возобновляемая энергия
Авторитетный контроль
  • MA : ,
  • NDL :

Современные системы распределения [ править ]

Традиционно распределительные системы работали бы только как простые распределительные линии, где электроэнергия из передающих сетей распределялась бы между потребителями. Сегодняшние системы распределения в значительной степени интегрированы с генерированием возобновляемой энергии на уровне распределения энергосистем с помощью ресурсов распределенной генерации , таких как солнечная энергия и энергия ветра . В результате системы распределения с каждым днем ​​становятся все более независимыми от сетей передачи. Уравновешивание отношений спроса и предложения в этих современных распределительных сетях (иногда называемых микросетями)) является чрезвычайно сложной задачей и требует использования различных технологических и эксплуатационных средств для работы. К таким инструментам относятся аккумуляторная электростанция , аналитика данных , инструменты оптимизации и т. Д.

Первичное распространение

Первичные распределительные напряжения находятся в диапазоне от 4 кВ до 35 кВ между фазами (от 2,4 кВ до 20 кВ между фазами и нейтралью). Только крупные потребители получают питание непосредственно от распределительных напряжений; большинство потребителей коммунальных услуг подключены к трансформатору, который снижает напряжение распределения до низкого «напряжения использования», «напряжения питания» или «напряжения сети», используемого в системах освещения и внутренней проводки.

Конфигурации сети

Подстанция возле Йеллоунайфа , на северо-западных территориях Канады

Распределительные сети делятся на два типа: радиальные и сетевые. Радиальная система устроена как дерево, где у каждого покупателя есть один источник снабжения. Сетевая система имеет несколько источников питания, работающих параллельно. Точечные сети используются для сосредоточенных нагрузок. Радиальные системы обычно используются в сельской или загородной местности.

Радиальные системы обычно включают аварийные соединения, где система может быть переконфигурирована в случае проблем, таких как неисправность или плановое обслуживание. Это можно сделать, открывая и закрывая переключатели, чтобы изолировать определенный участок от сети.

На длинных фидерах наблюдается падение напряжения ( искажение коэффициента мощности ), что требует установки конденсаторов или регуляторов напряжения .

Реконфигурация путем обмена функциональными связями между элементами системы представляет собой одну из наиболее важных мер, которые могут улучшить эксплуатационные характеристики системы распределения. Проблема оптимизации посредством реконфигурации системы распределения электроэнергии, с точки зрения ее определения, является исторически единственной объективной проблемой с ограничениями. С 1975 года, когда Merlin and Back представили идею реконфигурации системы распределения для снижения потерь активной мощности, до настоящего времени многие исследователи предлагали различные методы и алгоритмы для решения проблемы реконфигурации как единой объективной проблемы. Некоторые авторы предложили подходы, основанные на оптимальности по Парето (включая в качестве целей потери активной мощности и показатели надежности). Для этого использовались различные методы, основанные на искусственном интеллекте: микрогенетика, обмен ветвями, оптимизация роя частиц и генетический алгоритм недоминантной сортировки .

Сельские услуги

В системах электрификации сельских районов , как правило, используются более высокие напряжения распределения из-за больших расстояний, покрываемых распределительными линиями (см. Управление по электрификации сельских районов ). Распределение напряжения 7,2, 12,47, 25 и 34,5 кВ распространено в США; 11 кВ и 33 кВ распространены в Великобритании, Австралии и Новой Зеландии; 11 кВ и 22 кВ распространены в ЮАР; 10, 20 и 35 кВ распространены в Китае. Иногда используются другие напряжения.

Сельские службы обычно стараются минимизировать количество столбов и проводов. В нем используются более высокие напряжения (чем в городских сетях), что, в свою очередь, позволяет использовать стальную оцинкованную проволоку. Прочная стальная проволока позволяет сократить расходы на широкое расстояние между полюсами. В сельской местности полюсный трансформатор может обслуживать только одного потребителя. В Новой Зеландии , Австралии , Саскачеван, Канада и Южная Африка , однопроводный возвратные земля системы (SWER) используются электрифицировать отдаленные сельские районы.

Популярные статьи  Как подключить магнитофон, который работает и от 220 В и от батареек?

Трехфазная сеть обеспечивает питание крупных сельскохозяйственных предприятий, нефтеперекачивающих установок, водопроводных станций или других потребителей с большими нагрузками (трехфазное оборудование). В Северной Америке воздушные распределительные сети могут быть трехфазными, четырехпроводными с нулевым проводом. Сельская распределительная система может иметь длинные участки с одним фазным проводом и нейтралью. В других странах или в сельской местности нейтральный провод соединяется с землей, чтобы использовать его в качестве обратного ( однопроводного заземления ). Это называется незаземленной системой.

Основные составные части электрической сети

Электроэнергетической сетью (Рис. 5) называется совокупность электроустановок для передачи и распределения электрической энергии, состоящая из подстанций, распределительных устройств, токопроводов, воздушных и кабельных линий электропередачи, работающих на определенной территории.

Система распределения электроэнергии: определение, состав, примеры

Рисунок 5 — Электрическая сеть, и электроустановки для передачи и распределения электрической энергии

Все встречающиеся на практике схемы представляют собой сочетания отдельных элементов — фидеров, магистралей и ответвлений.

Электрические сети, в свою очередь, подразделяются на магистральные электрические сети и распределительные электрические сети.

К магистральным сетям относятся все высоковольтные линии электропередач (ЛЭП), к распределительным – ЛЭП мощностью ниже 110 кВ. Виды электрических сетей представлены на рисунке 6.

Рисунок 6 — Виды электрических сетей

Сети связаны между собой трансформаторными и распределительными подстанциями. Для обеспечения установленных требований, энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций.

Электрические сети делятся по:

  • напряжению;
  • степени подвижности;
  • назначению;
  • роду тока и числу проводов;
  • схеме электрических соединений:

а) разомкнутые (нерезервированные). Схемы разомкнутых сетей представлена на рисунке 7.

Рисунок 7 — Схемы разомкнутых сетей: а — радиальные (нагрузка только на конце линии); б — магистральные (нагрузка присоединена к линии в разных местах)

б) замкнутые (резервированные) (Рис. 8).

Система распределения электроэнергии: определение, состав, примеры

Рисунок 8 — Схемы замкнутых сетей: а — сеть с двухсторонним питанием; б — кольцевая сеть; в — двойная магистральная линия; г сложнозамкнутая сеть (для питания ответственных потребителей по двум и более направлениям)

Магистральные схемы электроснабжения применяются в следующих случаях:

  • а) когда нагрузка имеет сосредоточенный характер, но отдельные узлы ее оказываются расположенными в одном и том же направлении по отношению к подстанции и на сравнительно незначительных расстояниях друг от друга, причем абсолютные величины нагрузок отдельных узлов недостаточны для рационального применения радиальной схемы;
  • б) когда нагрузка имеет распределенный характер с той или иной степенью равномерности.

По конструкции: электропроводки (силовые и осветительные), токопроводы — для передачи электроэнергии в больших количествах на небольшие расстояния, воздушные линии — для передачи электроэнергии на большие расстояния, кабельные линии — для передачи электроэнергии на далекие расстояния в случаях, когда сооружение ВЛ невозможно.

Наибольшее распространение для местных распределительных сетей получили радиальные, магистральные, смешанные (радиальномагистральные) и петлевые схемы.

При радиальной схеме электроснабжения каждая линия является как бы лучом, соединяющим узел сети (подстанцию, распределительный пункт) с единственным потребителем.

При магистральной схеме электроснабжения одна линия — магистраль — обслуживает, как указано, несколько распределительных пунктов или приемников, присоединенных к ней в различных ее точках.

Смешанные схемы распределительных местных сетей применяются при различном расположении потребителей относительно ЦП и сочетаются принципы построения как радиальной, так и магистральных схем.

К электрическим сетям предъявляются следующие требования: надежность, живучесть и экономичность.

Надежность — основное техническое требование, под которым понимается свойство сети выполнять свое назначение в пределах заданного времени и условий работы, обеспечивая электроприемники электроэнергией в необходимом количестве и надлежащего качества.

Живучесть электрической сети — это свойство выполнять свое назначение в условиях разрушающих воздействий в том числе и в боевой обстановке при воздействиях средств поражения противника.

Экономичность — это минимум затрат на сооружение и эксплуатацию сети при условии выполнения требований надежности и живучести.

Основные технологические процессы в электроэнергетике

Нормативы потребления электроэнергии на человека без счетчика

Производство электроэнергии в России базируется на трёх китах энергетической системы. Это атомная, тепловая и гидроэнергетика.

Три вида генерирования электричества

Электростанция Топливо Генерация
ТЭС Уголь, мазут Получение пара от сгорания топлива, который движет турбины генераторов
ГЭС Потенциальная энергия потока воды Движение турбин под напором воды
АЭС Урановые сердечники Получение пара от тепла ядерной реакции. Энергия пара движет генераторные паротурбины

Ультразвуковой способ

Студентами Пенсильванского университета (США) на недавней выставке в 2011 году был продемонстрирован способ передачи электротока с помощью ультразвука. Передатчик генерировал акустические волны в ультразвуковом диапазоне, приёмник преобразовывал их в электрический ток. В качестве носителя энергии ультразвук был выбран не случайно. Его воздействие на организм человека абсолютно безвредно.

Несовершенство этого способа заключается в том, что КПД передачи очень низкий, нужны прямая видимость между абонентами и ограниченность расстояния (7-10 метров).

Метод электромагнитной индукции

Работа обыкновенного трансформатора даёт представление о том, как осуществляется передача электричества без проводов методом электромагнитной индукции. В процессе участвуют две катушки. Магнитное поле, возбуждаемое протекающим током по виткам первичной обмотки, индуцирует электрический поток во вторичной обмотке трансформатора.

Примерами использования эффекта электромагнитной индукции могут быть зарядные устройства смартфонов и электрические зубные щётки. Недостатком такого способа передачи энергии является непременная близость катушек. Даже при небольшом увеличении промежутка между обмотками большая часть энергии начинает распыляться в пространстве.

Популярные статьи  Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

Один из видов электромагнитной индукции – это использование резонанса. Суть способа заключается в том, что приёмник и передатчик функционируют в одном частотном диапазоне. Передающее и приёмное устройства представляют собой соленоид с одним слоем витков. Генерирующий прибор оснащён конденсаторной схемой, с помощью которой он настраивается на частоту приёмника.

Демонстрация метода электромагнитной индукции

Электростатическая индукция

В основе метода заложен принцип прохождения энергии через тело диэлектрика. Способ называют ёмкостной связью. Генератор создаёт в ёмкости электрическое поле, которое возбуждает разницу потенциалов между двумя электродами потребителя.

Никола Тесла для демонстрации беспроводной лампы освещения использовал именно метод электростатической индукции. Лампа получала питание от переменного электрического поля высокой частоты. Она светилась ровно, независимо от её перемещения в пространстве комнаты.

Микроволновое излучение

Специалисты космотехники разработали способ передачи электроэнергии от орбитальных солнечных батарей на космические корабли с помощью радиосигнала микроволнового диапазона. Проблема этого метода состоит в том, что для приёма и передачи пучкового излучения требуются антенны с очень большой диафрагмой.

Учёные НАСА в 1978 году пришли к выводу, что для передачи микроволнового луча частотой 2,45 ГГц излучающая антенна должна иметь диаметр отражающей поверхности 1 км. Приёмная ректенна должна быть диаметром 10 км. Уменьшить эти размеры возможно путём использования сверхкоротких волн. Однако сигналы такого диапазона быстро поглощаются атмосферой или блокируются дождевыми осадками.

Обратите внимание! Безопасная плотность мощности излучаемой энергии равняется 1 мВт/см2. Этой норме отвечает антенна диаметром 10 км с передающей мощностью потенциала 750 МВт

Электропроводность Земли

Существует теория использования недр и океанов Земли для беспроводной передачи энергии. Электропроводимость гидросферы, залежей металлических руд может быть использована для передачи низкочастотного переменного тока. Электростатическая индукция диэлектрических тел может возникать в огромных залежах кварцевого песка и тому подобных минералов.

Передача электрического тока возможна также через воздушное пространство методом электростатической индукции. Никола Тесла в своё время выдвинул предположение, что в будущем появятся технологии, которые для передачи электроэнергии будут использовать землю, океанические воды и атмосферу планеты.

Всемирная беспроводная система

Впервые о Всемирной беспроводной системе передачи электроэнергии стало известно от великого учёного Теслы. В 1904 году он заявил, что создание ВБС, используя высокую электрическую проводимость плазмы и Земли, вполне осуществимо.

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением

То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
Статическую устойчивость можно не принимать во внимание.
Нет необходимости синхронизировать по частоте связанные энергосистемы.
Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
Меньшее влияние электромагнитных волн на средства связи.
Практически отсутствует генерация реактивной мощности.. Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения

В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Производство электроэнергии

Среди генераторов электроэнергии наиболее распространены электромеханические генераторы переменного тока

. Они преобразуют механическую энергию вращения ротора в энергию индукционного переменного тока, возникающего благодаря явлению электромагнитной индукции.

На рис. 1 проиллюстрирована основная идея генератора переменного тока: проводящая рамка (называемая якорем

) вращается в магнитном поле.

Система распределения электроэнергии: определение, состав, примеры

Рис.1. Схема генератора переменного тока

Магнитный поток сквозь рамку меняется со временем и порождает ЭДС индукции, которая приводит к возникновению индукционного тока в рамке. С помощью специальных приспособлений (колец и щёток) переменный ток передаётся из рамки во внешнюю цепь.

Если рамка вращается в однородном магнитном поле с постоянной угловой скоростью , то возникающий переменный ток будет синусоидальным. Покажем это.

Выберем направление вектора нормали к плоскости рамки. Вектор , таким образом, вращается вместе с рамкой. Направление обхода рамки считается положительным, если с конца вектора этот обход видится против часовой стрелки.

Напомним, что ток считается положительным, если он течёт в положительном направлении (и отрицательным в противном случае). ЭДС индукции считается положительной, если она создаёт ток в положительном направлении (и отрицательной в противном случае).

Предположим, что в начальный момент времени векторы и сонаправлены. За время рамка повернётся на угол . Магнитный поток через рамку в момент времени равен:

(1)

где — площадь рамки. Дифференцируя по времени, находим ЭДС индукции:

(2)

Если сопротивление рамки равно , то в ней возникает ток:

(3)

Как видим, ток действительно меняется по гармоническому закону, то есть является синусоидальным.

Популярные статьи  Какой поставить стабилизатор напряжения, если в квартире слабое напряжение сети?

В реальных генераторах переменного тока рамка содержит не один виток, как в нашей схеме, а большое число витков. Это позволяет увеличить в раз ЭДС индукции в рамке. Почему?

Объяснить это несложно. В самом деле, магнитный поток через каждый виток площади по-прежнему определяется выражением (1), так что ЭДС индукции в одном витке согласно формуле (2) равна: . Все эти ЭДС индукции, возникающие в каждом витке, складываются друг с другом, и суммарная ЭДС в рамке окажется равной:

Сила тока в рамке:

где есть по-прежнему сопротивление рамки.

Кроме того, рамку снабжают железным (или стальным) сердечником. Железо многократно усиливает магнитное поле внутри себя, и поэтому наличие сердечника позволяет увеличить магнитный поток сквозь рамку в сотни и даже тысячи раз. Как следует из формул (2) и (3), ЭДС индукции и ток в рамке увеличатся во столько же раз.

Постоянный ток

Вторым способом передачи электрического тока потребителю, является постоянный ток. Подобный ток является выпрямленным. Он встречается в аккумуляторах, батарейках, зарядных устройствах. Такой ток и сейчас подается потребителям некоторых стран, но в очень малых количествах. Его вырабатывают солнечные батареи. Постоянный ток можно подавать по действующим ЛЭП и подземным кабелям. Плюсы такой передачи, следующие:

  1. С расстоянием нет потери мощности. Не придется завышать напряжение на электростанции.
  2. Статическая устойчивость не оказывает влияния на передачу и распределение.
  3. Не требуется настраивать частотную синхронизацию.
  4. Напряжение можно передать всего по одной линии с одним контактным проводом.
  5. Нет влияния электромагнитного излучения.
  6. Минимальная реактивная мощность.

Постоянный ток для потребителя не подается только по причине огромной себестоимости оборудования для электростанций.

Проводимость электрического тока и процент завышения в начале передачи, во многом зависят от сопротивления самой ЛЭП. Снизить сопротивление, — а тем самым нагрузку — можно при помощи охлаждения до сверхнизкой температуры. Это помогло бы увеличить расстояние для передачи энергии и существенно снизить потери. Сегодня нет технологии занижения температуры линии электропередачи. Такая технология является крайне дорогой и требует больших изменений в конструкции. Но в регионах крайнего севера этот способ вполне работает и намного занижает процент передачи мощностей и потери от расстояния.

Принципиальная схема снабжения и распределения электрической энергии

Контроль распределения электроэнергии и ее передачу от источника к приемнику третьей категории в черте города легче всего осуществлять, применяя радиальную тупиковую схему.

Однако такая схема обладает одним существенным недостатком, который заключается в том, что при выходе одного любого элемента системы из строя без электроэнергии будут оставаться все приемники, подключенные к такой схеме. Так будет продолжаться до тех пор, пока не будет заменен поврежденный участок цепи. Из-за данного недостатка применять такую схему включения не рекомендуется.

Если говорить о схеме подключения и распределения энергии для приемников второй и третьей категории, то здесь можно использовать кольцевую принципиальную схему.

При таком подключении, если произойдет сбой в работе одной из линии электропередачи, можно восстановить электроснабжение всех приемников, подключенных к такой сети в ручном режиме, если отключить питание от основного источника и запустить резервный. Кольцевая схема отличается от радиальной тем, что у нее имеются специальные участки, на которых в отключенном режиме находятся разъединители или же выключатели. При повреждении основного источника питания их можно включить, чтобы восстановить подачу, но уже от резервной линии.

Также это будет служить хорошим преимуществом в том случае, если на основной линии необходимо провести какие-либо ремонтные работы. Перерыв в электроснабжении такой линии допускается на срок около двух часов. Этого времени хватает для того, чтобы отключить поврежденный основной источник питания и подключить к сети резервный, чтобы он осуществлял распределение электроэнергии.

История мировой электроэнергетики

Электроэнергетика – стратегическая отрасль экономической системы любого государства. История возникновения и развития ЭЭ берёт своё начало с конца XIX столетия. Предтечей появления промышленной выработки электроэнергии являлись открытия основополагающих законов о природе и свойствах электрического тока.

Отправной точкой, когда возникли производство и передача электроэнергии, считают 1892 год. Именно тогда была построена первая электростанция в Нью-Йорке под руководством Томаса Эдисона. Станция стала источником электрического тока для ламп уличного освещения. Это был первый опыт перевода тепловой энергии от сгорания угля в электричество.

С тех пор началась эра массового строительства тепловых электростанций (ТЭС), работающих на твёрдом топливе – энергетическом угле. С развитием нефтяной промышленности появились огромные запасы мазута, которые образовывались в результате переработки нефтепродуктов. Были разработаны технологии получения носителя тепловой энергии (пара) от сжигания мазута.

С тридцатых годов прошлого века получили широкое распространение гидроэлектростанции (ГЭС). Предприятия стали использовать энергию ниспадающих потоков воды рек и водохранилищ.

В 70-е годы началось бурное строительство атомных электростанций (АЭС). Одновременно с этим стали разрабатываться и внедряться альтернативные источники электроэнергии: это ветровые установки, солнечные батареи, щелочно-кислотные геостанции. Появились мини установки, использующие тепло для получения электричества в результате химических процессов разложения навоза и бытового мусора.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: