Калькулятор расчета многослойной катушки индуктивности

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехнике Эти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.Катушки связи, или трансформаторы связи Взаимодействующие магнитными полями пара и более катушек обычно включаются параллельно конденсаторам для организации колебательных контуров. Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами, что позволяет разделить по постоянному току, например, цепь базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).Вариометры Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется степень взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.Дроссели Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Дроссели включаются последовательно с нагрузкой для ограничения переменного тока в цепи, они часто применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента, а также в качестве балласта для включения разрядных ламп в сеть переменного напряжения. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца), нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.

Сдвоенный дроссель

Сдвоенные дроссели Это две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный сердечник (из трансформаторной стали). Для фильтрации высокочастотных помех — сердечник ферритовый.

ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОНИКА. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

  1. Накопленная энергия в индуктивности
  2. Гидравлическая модель
  3. Индуктивность в электрических цепях
  4. Схемы соединения катушек индуктивностей
  5. Параллельное соединение индуктивностей
  6. Последовательное соединение индуктивностей
  7. Добротность катушки индуктивности
  8. Катушка индуктивности. Формула индуктивности
  9. Базовая формула индуктивности катушки
  10. Индуктивность прямого проводника
  11. Индуктивность катушки с воздушным сердечником
  12. Индуктивность многослойной катушки с воздушным сердечником
  13. Индуктивность плоской катушки
  14. Конструкция катушки индуктивности
  15. Применение катушек индуктивности
  16. Расчет катушек индуктивности
  17. Метод определения собственной ем­кости катушек
  18. Расчет и изготовление плоских катушек индуктивности

От чего зависит индуктивность

Катушка индуктивности

— является пассивным компонентом электронных схем, основное предназначение которой является сохранение энергии в виде магнитного поля. Свойство катушки индуктивности чем-то схоже с конденсатором, который хранит энергию в виде электрического поля.

Индуктивность (измеряется в Генри) — это эффект возникновения магнитного поля вокруг проводника с током. Ток, протекающий через катушку индуктивности, создает магнитное поле, которое имеет связь с электродвижущей силой (ЭДС) оказывающее противодействие приложенному напряжению.

Возникающая противодействующая сила (ЭДС) противостоит изменению переменного напряжения и силе тока в катушке индуктивности. Это свойство индуктивной катушки называется индуктивным сопротивлением. Следует отметить, что индуктивное сопротивление находится в противофазе к емкостному реактивному сопротивлению конденсатора в цепи переменного тока. Путем увеличения числа витков можно повысить индуктивность самой катушки.

Эквивалентная схема реальной катушки индуктивности

Каждый дроссель можно представить в виде эквивалентной схемы.

Данная схема состоит из элементов:

  • Rw – сопротивление обмотки с выводами;
  • L – индуктивность;
  • Cw – паразитная ёмкость;
  • Rl – сопротивление потерь.

Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.

Эквивалентная схема дросселя

Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.

Последовательное и параллельное соединение катушек

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек.  Это может привести к неправильным показаниям общей индуктивности.

Эквивалентная схема реальной катушки индуктивности

Каждый дроссель можно представить в виде эквивалентной схемы.

Данная схема состоит из элементов:

  • Rw – сопротивление обмотки с выводами;
  • L – индуктивность;
  • Cw – паразитная ёмкость;
  • Rl – сопротивление потерь.

Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.

Популярные статьи  Рейтинг светодиодных ламп: 11 лучших производителей

Калькулятор расчета многослойной катушки индуктивности
Эквивалентная схема дросселя

Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.

Гидравлическая модель

Работу катушки индуктивности можно сравнить с работой гидротурбины в потоке воды. Поток воды, направленный сквозь еще не раскрученную турбину, будет ощущать сопротивление до того момента, пока турбина полностью не раскрутится.

Далее турбина, имеющая определенную степень инерции, вращаясь в равномерном потоке, практически не оказывая влияния на скорость течения воды. В случае же если данный поток резко остановить, то турбина по инерции все еще будет вращаться, создавая движение воды. И чем выше инерция данной турбины, тем больше она будет оказывать сопротивление изменению потока.

Также и индуктивная катушка сопротивляется изменению электрического тока протекающего через неё.

Форма

На рисунке слева — Ш-образный сердечник, справа — П-образный. A — толщина сердечника, B — высота окна сердечника, C — ширина окна сердечника, D — ширина зуба.

Делая прокладку в сердечнике, не забудьте, что ее толщина должна быть вдвое меньше расчетного зазора, так как магнитная линия в Ш и П — образных сердечниках пересекает ее дважды.

(читать дальше…) :: (в начало статьи)

 1   2 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

Доброго дня. Можно ли применить методику для расчета моторного трехфазного дросселя (ПЧ+двигатель)? Какие особенности изготовления таких дросселей (например, взять три трансформатора и пр.)? Читать ответ…

Доброго здравия! По какой формуле включается предупреждение о недостаточности мощности сердечника? Читать ответ…

Здравствуйте! Я собираю сварочный инвертор по схеме из книги Негуляева (полумост резонансный), и пытался определить с помощью ваших онлайн-калькуляторов индуктивность дросселя резонанса, но в них надо подставлять известное значение индуктивности (и откуда, к слову, его взять если нет измерительных приборов) и получать витки. А мне то надо наоборот. Это нужно, чтобы попытать Читать ответ…

В расчёте дросселя, а именно определении зазора, есть расхождения около 30% в меньшую сторону. Как можете это прокомментировать. Читать ответ…

При токе 50-60 А на Ш образном сердечнике витки, расположенные в непосредственной близости к зазору начинают обугливаться. Любая железка, введённая в зазор просто плавится. Это же индукционка какая-то получается. Практика подсказывает, нужно как можно дальше удалять витки от зазора. Предпочтение в таких случаях отдаётся П — обр. сердечникам. Так ли это? Читать ответ…

Помимо непонятного выражения в формуле зазора, еще непонятно почему в других источниках приведены, кажется, какие-то иные расчеты? Вот например, в этой книге , я так понял, какой-то общий случай расчета, или почему-то другие они. Читать ответ…

Здравствуйте. А что значит выражение в формуле величины зазора в сердечнике? Читать ответ…

Спасибо за материал!
‘Провод 0.25мм’ — это диаметр или площадь сечения? Читать ответ…

Здравствуйте. Для сборки импульсного источника синусоидального напряжения расчитываю параметры дросселя L1. Имеющийся Ш-образный сердечник 20*28 N87 мал по размерам, как указывает онлайн расчет. Но в программе нет возможности по требуемым параметрам подобрать необходимый размер. Чтобы пойти и купить нужный. Подскажите или требуемые габаритные размеры или программку для выбора Читать ответ…

Здравствуйте, не могли бы вы помочь с расчётом дросселя для схемы опубликованной на вашем сайте: http://hw4.ru/circuitry-switching-sinus

В наличие имеется провод диаметром 0,5мм и ферритовые кольца B64290L0651X03
http://static.advonics.com/content/pdfs/221/7092193.pdf

Размер R22,1×13,7×12,5(mm)
Материал Т38
Начальная проницаемость 10 000

Номинальный вы Читать ответ…

Еще статьи

Изготовление дросселя, катушки индуктивности своими руками, самому, са…
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы…

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….

Конструирование (проектирование и расчет) источников питания и преобра…
Разработка источников питания и преобразователей напряжения. Типовые схемы. Прим…

Проверка дросселя, катушки индуктивности, трансформатора, обмотки, эле…
Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электрома…

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Пушпульный импульсный источник питания. Онлайн расчет. Форма. Подавлен…
Как рассчитать пуш-пульный импульсный преобразователь напряжения. Как подавить п…

Повышающий импульсный источник питания. Онлайн расчет. Форма. Подавлен…
Как рассчитать повышающий импульсный преобразователь напряжения. Как подавить пу…

Методы расчета индуктивностей

Наиболее полно теоретические основы методов расчета индуктивностей изложены в справочной книге: «». Здесь же хотелось бы немного систематизировать подходы к расчету индуктивностей.

Прежде всего отметим, что расчет индуктивности можно вести двумя способами:∙ Численный метод с различной степенью упрощения задачи ∙ Расчет по упрощенным эмпирическим формулам

Эмпирический подход предполагает подбор (подгонку) относительно несложных аппроксимирующих формул по результатам измерений индуктивности реальных катушек. Расчет по упрощенным эмпирическим формулам имеет ограничения в точности и применим только к катушкам с определенной геометрией намотки. Большинство таких формул можно найти здесь. Несмотря на невысокую точность, такой расчет чаще всего вполне достаточен в радиолюбительской практике.

Численные методы основываются на реальных физических моделях катушек индуктивности и их, в свою очередь, можно разбить на две категории:

  1. Расчет в программах основанных на фундаментальных законах классической электродинамики, так называемых электромагнитных симуляторах. К ним можно отнести , , , и т.п. Эти программы используют специальные численные методы, такие как и . Расчет в таких программах довольно точен, позволяет учесть множество нюансов, рассчитать катушку произвольной формы, однако требует огромных ресурсов компьютера. Применяется при научном анализе или если катушка работает в режиме, когда ее нельзя представлять как сосредоточенный элемент []
  2. Численные методы расчета, основанные на фундаментальных формулах физики, применимых к круговым проводникам, выведенных в XIX веке . Позволяют провести расчет более точно, чем по эмпирическим формулам, но не требуют запредельных аппаратных ресурсов компьютера. На них следует остановится подробнее, т.к их и использует Coil32…
Популярные статьи  Как защититься от электромагнитного излучения?

Расчет индуктивности в программе Coil32 основан на модели Максвелла, в которой катушка представляется как множество соосных бесконечно тонких круговых проводников.Из следует, что силовые линии магнитного поля всегда замкнуты. Из этого следует, что магнитный поток порожденный круговым контуром с током весь проходит через поверхность, ограниченную этим контуром. Это обстоятельство отражено в следующей формуле:

Из этой формулы можно вывести определение для собственной индуктивности кругового проводника через двойной контурный интеграл Ф.Е.Неймана для взаимоиндукции :

Как показал Д.К.Максвелл, для двух бесконечно тонких круговых соосных проводников этот интеграл имеет однозначное решение, которое выглядит следующим образом:

, где:

  • M — взаимоиндукция;
  • r1, r2 — радиусы двух бесконечно тонких круговых проводников;
  • x — расстояние между центрами кругов, ограниченных этими проводниками;
  • K,E — , соответственно первого и второго рода;

Численный метод расчета по формуле Максвелла сводится к численным методам решения эллиптических интегралов.

По формуле Максвелла можно рассчитывать как индуктивность многослойных и однослойных катушек, так и взаимную индуктивность двух отдельных катушек. Погрешности модели, связанные с допущением, что провод бесконечно тонкий и представляет собой набор круговых проводников (хотя на самом деле — это спираль), можно уменьшить с помощью соответствующих поправок.

Рассчитывая взаимоиндукцию проводника «самого на себя», т.е. его самоиндукцию (собственную индуктивность), Максвелл использует понятие — «среднее геометрическое расстояние» — GDM (g), для круглого провода:

g = e0.25*rw, где rw — радиус провода.

Очень важен следующий момент. Вся вышеприведенная логика рассуждений и вывода формул, начиная от формулы Неймана, справедлива в случае равномерного распределения плотности тока вдоль катушки. В подавляющем большинстве практических случаев так и есть. Однако если катушка работает вблизи частот собственного резонанса, начинает проявляться неравномерность распределения плотности тока по проводнику! Другими словами, начинает проявляться зависимость индуктивности от частоты, которая в наших расчетах не учитывается. Поэтому индуктивность катушки можно рассчитать корректно только на частотах не превышающих 60-70% от частоты ее собственного резонанса. Таким образом Coil32 не годится для точных расчетов, например, катушек Тесла или спиральных резонаторов. В этом случае и в случае если катушка работает в режиме выше частоты собственного резонанса — ее нужно представлять только в виде модели длинной линии и рассчитывать в программах-электромагнитных симуляторах, либо пользоваться специальными эмпирическими формулами.

Ссылки:

  1. D W Knight 2013
  2. Robert Weaver 2012
  3. Marc T. Thompson 1999
  4. M.A.Bueno A K T Assis 1995

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Индуктивность проводника

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

L = 0,01*D*w2/(l/D) + 0,46,

где:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

w = 32*√(L*D),

где:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

w = l/d,

где:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

Расчёт индуктивности прямого провода

Собираясь найти L круглого прямого проводника, обращаются к приближённой формуле:

L = (μ0/2π)*l*( μe*ln(l/r) + 1/4* μi,

где:

  • μ0 – магнитная постоянная;
  • μe – относительная магнитная проницаемость (ОМП) среды (для вакуума – 1);
  • μi – ОМП проводника;
  • l – длина провода;
  • r – радиус провода.

Формула справедлива для длинного проводника.

Расчёт однослойной намотки

Однослойные дроссели без сердечника легко и быстро можно рассчитать при помощи онлайн-калькулятора, в окно которого можно забить все известные характеристики, и программа выдаст значение L.

Вычисления проводятся и вручную, с использованием математического выражения. Оно имеет вид:

L = D2*n2/45D + 100*l,

где:

  • D – диаметр катушки, см;
  • l – длина намотанного провода, см;
  • n – количество витков.

Формула подходит для вычислений L дросселей без ферритовых сердечников.

Калькулятор расчета многослойной катушки индуктивности
Однослойная катушка виток к витку

Дроссель с сердечником

При наличии сердечника следует учесть его размеры и форму. В случае одинаковых катушках индуктивность больше у той, которая располагается на сердечнике.

Калькулятор расчета многослойной катушки индуктивности
Расчёт однослойной намотки с сердечником

Многослойная намотка

Особенности расчёта при подобном способе наматывания провода заключаются в том, что нужно учитывать его толщину. Формула для дросселя без сердечника имеет вид:

N²=(L*(3Dk+9l+10t))/0.008Dk²,

где:

  • Dk – общий диаметр (диаметр каркаса и намотки);
  • t – толщина слоя;
  • l – длина накрученного провода.

Все значения подставляют в мм, величину L – в мкГн.

Калькулятор расчета многослойной катушки индуктивности
Многослойная намотка

Калькулятор взаимной индукции

Калькулятор расчета многослойной катушки индуктивности

Этот калькулятор определяет взаимоиндукцию двух связанных катушек индуктивности.

Пример. Рассчитать взаимную индуктивность двух расположенных рядом катушек индуктивности 10 мкГн и 5 мкГн с коэффициентом связи 0,5.

Входные данные
Индуктивность первой катушки, L1

генри (Гн)миллигенри (мГн)микрогенри (мкГн)наногенри (нГн)пикогенри (пГн)
Индуктивность второй катушки, L2

миллигенри (мГн)

Коэффициент связи, k

0 ≤ k ≤ 1

Выходные данные
ВзаимоиндукцияM миллигенри (мГн)

Введите величины индуктивностей и коэффициента связи, выберите единицы индуктивности в генри (Гн), миллигенри (мГн), микрогенри (мкГн) или пикогенри (пГн) и нажмите кнопку Рассчитать.

В токоизмерительных клещах с разъемным магнитопроводом для безопасного измерения тока без необходимости подключать прибор к схеме используется измерительный трансформатор. В приборе используется явление взаимной индукции. На разъемном магнитопроводе надета катушка, являющаяся вторичной обмоткой измерительного трансформатора. Первичной «обмоткой» является охватываемый магнитопроводом провод с током. Электродвижущая сила, возникающая в катушке на магнитопроводе, пропорциональна току, текущему в проводнике, охваченном клещами. Прибор измеряет напряжение на зажимах катушки и указывает на дисплее значение измеряемого тока.

Популярные статьи  Как правильно подключить вентилятор в двух комнатах с двухклавишного выключателя?

Калькулятор определит взаимоиндукцию M двух связанных катушек индуктивности по формуле:

где k — коэффициент связи, L₁ — индуктивность первой катушки и L₂ — индуктивность второй катушки. Коэффициент связи определяется как отношение взаимоиндукции двух катушек к максимально возможному значению их взаимоиндукции. Коэффициент связи изменяется в пределах от 0 до 1 и зависит от близости катушек или обмоток, материала их сердечника, их взаимной ориентации, формы и количества витков. У слабо связанных катушек или обмоток коэффициент связи k 0.5. Если две катушки плотно намотаны одна над другой на общем ферромагнитном сердечнике, их связь почти идеальна и значение коэффициента связи k приближается к единице. Если же расстояние между катушками велико, значение k очень мало и приближается к нулю.

Тороидальные трансформатор и дроссель в импульсном блоке питания

Пример расчетов. Коэффициент связи двух катушек с индуктивностью 2 мкГн и 3 мкГн равен 0,5. Взаимоиндукция в микрогенри определяется как

Две катушки с взаимной индукцией на принципиальной схеме

При увеличении электрического тока, протекающего через катушку индуктивности L₁ от внешней цепи, вокруг катушки создается увеличивающееся магнитное поле, в котором сохраняется энергия. При уменьшении тока магнитное поле также уменьшается. При этом на выводах катушки возникает напряжение (ЭДС самоиндукции) в направлении, противоположном направлению тока, и сохраняемая в магнитном поле энергия отдается обратно во внешнюю цепь. Если рядом с первой катушкой поместить вторую катушку L₂, то магнитное поле, возникшее в первой катушке, создаст напряжение во второй катушке. Если общее магнитное поле пронизывает несколько катушек, говорят, что у них имеется взаимная индукция. Она обычно обозначает буквой M и измеряется в единицах индуктивности (генри).

Взаимоиндукция в вашем автомобиле: для создания искры в свечах зажигания используется катушка зажигания, представляющая собой трансформатор с высоким коэффициентом трансформации. Когда ток через первичную обмотку с малым числом витков прерывается, очень большая ЭДС возникает во вторичной обмотке с большим числом витков, которая достаточна для создания искры в зазоре автомобильной свечи зажигания

В обратной ситуации, если ток течет в катушке L₂, а наводится ток в катушке L₁, взаимоиндукция будет той же. Отметим, что электродвижущая сила (ЭДС) возникает только при изменении тока, причем чем быстрее изменяется ток, тем больше будет ЭДС. То есть, ЭДС взаимной индукции прямо пропорциональна скорости изменения тока

Явление взаимной индукции используется в трансформаторах, электродвигателях, генераторах и других устройствах, в которых для функционирования необходимо взаимодействие с магнитным полем. В то же время взаимоиндукция часто бывает нежелательной, когда возникает паразитная индуктивная связь между проводниками в схеме или даже между силовыми кабелями и металлическими кабельными каналами, в которых они помещены.

Особенности применения дросселей в схемах

Дроссели можно соединять последовательно и параллельно.

[Индуктивность последовательно соединенных дросселей] = [Индуктивность первого дросселя] + [Индуктивность второго дросселя]

[Индуктивность параллельно соединенных дросселей] = 1 / (1 / [Индуктивность первого дросселя] + 1 / [Индуктивность второго дросселя])

Калькулятор расчета многослойной катушки индуктивности

На рисунке приведены типовые схемы на катушках индуктивности. (А) — Индуктивный делитель переменного напряжения. [Напряжение на нижнем дросселе] = [Входное напряжение] * [индуктивность нижнего дросселя] / ([индуктивность нижнего дросселя] + [индуктивность верхнего дросселя]) (Б) — Фильтр высших частот. (В) — Фильтр низших частот.

(читать дальше…) :: (в начало статьи)

 1   2   3 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи. сообщений.

Вот одна формула = * * / / , по которой получается, что чем больше ток через дроссель, тем больше получается число витков — что в корне противоречит теории — чем нужен больший ток, тем должно быть меньше число витков (ЭТО Читать ответ…

А что такое E в первой формуле, прямо таки получается огромная величина индуктивности.
В первой формуле правдоподобно, если индуктивность в микрогенри
Если я правильно понял, то, например, E-3 означает 0.001? Читать ответ…

Как рассчитать и изготовить самому дроссель ВЧ, индуктивностью 5мкГн, на ток 3-4А ? Читать ответ…

Еще статьи

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Инвертор, преобразователь, чистая синусоида, синус…
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за…

Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. …
Схема преобразователя однофазного напряжения в трехфазное….

Резонансный инвертор, преобразователь напряжения повышающий. Схема, ко…
Инвертор 12/24 в 300. Резонансная схема….

Диодные схемы. Схемные решения. Схемотехника. Частота, мощность, шумы….
Классификация, типы полупроводниковых диодов. Схемы, схемные решения на диодах. …

Понижающий импульсный источник питания. Онлайн расчет. Форма. Подавлен…
Как рассчитать понижающий импульсный преобразователь напряжения. Как подавить пу…

Простой импульсный прямоходовый преобразователь напряжения. 5 — 12 вол…
Схема простого преобразователя напряжения для питания операционного усилителя….

Инвертирующий импульсный источник питания. Онлайн расчет. Форма. Подав…
Как рассчитать инвертирующий импульсный преобразователь напряжения. Как подавить…

Схемы соединения катушек индуктивностей

Параллельное соединение индуктивностей

Напряжение на каждой из катушек индуктивностей, соединенных параллельно, одинаково. Эквивалентную (общую) индуктивность параллельно соединенных катушек можно определить по формуле:

Последовательное соединение индуктивностей

Ток, протекающий через катушки индуктивности соединенных последовательно, одинаков, но напряжение на каждой катушке индуктивности отличается. Сумма разностей потенциалов (напряжений) равна общему напряжению. Общая индуктивность последовательно соединенных катушек можно высчитать по формуле:

Эти уравнения справедливы при условии, что магнитное поле каждой из катушек не оказывает влияние на соседние катушки.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: