Как понизить напряжение?

Содержание

Как понизить постоянное и переменное напряжение – обзор способов – Электро Помощь

Как понизить напряжение?

Как понизить переменное напряжение конденсатором, как его рассчитать?

  • 25 мкф *400вольт и сопративление от бросков тока при включени 2 ома 5 ват
  • Я обычно провожу приблизительный расчт конденсатора, исходя из расчта реактивного сопротивления переменному току Z=1/F*C, где F — частота переменного тока в цепи в Гц, а C — мкость конденсатора в Фарадах, Z — сопротивление в омах. А потом можно рассчитать падение напряжения на участке цепи по закону ома: U=I*Z, где U — напряжение в вольтах, I — ток в амперах в приборе питания. Теперь, если вычесть из общего (сетевого) напряжения питания U, то полученное приблизительное напряжение на участке цепи напряжение, которое будет на нагрузке или потребителе питания для которого эти расчты делались. Поскольку мы пользуемся переменным током, то конденсаторы должны быть не полярными на рабочее напряжение близкое или больше расчтного U. Для цепей постоянного тока такой вариант понижения напряжения не годится, так как конденсатор работает только в цепях переменного или импульсного тока.
  • Два способа.Один — сделать мкостной делитель. Он рассчитывается так же, как и резистивный делитель (с учтом того, что падение напряжения на конденсаторе ОБРАТНО пропорционально его мкости). Второй — поставить гасящий конденсатор последовательно с нагрузкой. мкость рассчитывается исходя из закона Ома для цепи переменного тока.Но это вс имеет смысл только при сравнительно небольших токах. Если вот такая лампочка, то ток потребления у не почти 3 ампера (100/36). И чтоб на частоте 50 Гц погасить 175 вольт при ВОТ ТАКОМ токе, нужна довольно большая мкость — 50 мкФ (при использовании делителя мкости потребуются ещ большего номинала). Причм электролитический конденсатор тут использовать нельзя — мкость должна работать на переменном напряжении! Значит — бумажные. А это очень громоздко.Так что quot;идите как все, по камушкамquot;. Поставьте трансформатор.
  • Я бы вам посоветовал подобрать конденсатор для вашей нагрузки. Поключите питание к вашей нагрузке через конденсатор минимальной емкости. И измерьте напряжение на нагрузке, если напряжение маловато, тогда емкость следует увеличить. Емкость можно увеличить путем паралельного добавления других конденсаторов. При паралельном соеднении емкость слагается, а чем больше емкость, тем меньше получается сопротивление в конденсаторе для переменного тока. И ещ что следует учесть, что напряжение указанное на конденсаторе не должно быть меньше напряжения питания, лучше пусть будет больше.

Я могу посоветовать следующее:

Если предполагаются небольшие нагрузки, то можно прибегнуть к установке так называемого разделителя напряжения из двух сопротивлений.

Если же предполагаются большие нагрузки, то в данном случаем поможет инвертор или же трансформатор.

Как понизить напряжение: способы и приборы – Статейный холдинг

Нужно знать, как понизить напряжение в цепи, чтобы не повредить электрические приборы. Всем известно, что к домам подходит два провода – ноль и фаза. Это называется однофазной сетью. Трехфазная крайне редко используется в частном секторе и многоквартирных домах.

Необходимости в ней просто нет, так как вся бытовая техника питается от сети переменного однофазного тока. Но вот в самой технике требуется делать преобразования – понижать переменное напряжение, преобразовывать его в постоянное, изменять амплитуду и прочие характеристики.

Именно эти моменты и нужно рассмотреть.

Делитель напряжения на индуктивностях

Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания.

Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.

В этих формулах L1 и L2 – индуктивности первой и второй катушек, U1 – напряжение питающей сети в Вольтах, U(L1) и U(L2) – падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.

Два простых способа снизить напряжение на электролампах

Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.

В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп.

Параметры тока

Амперметр

Очень важной количественной характеристикой тока является сила тока (величина тока), или просто ток, — скалярная физическая величина, равная величине заряда, который проходит через поперечное сечение проводника за единицу времени. Но термин «сила тока» не следует воспринимать, как проявление силы в буквальном смысле. В проводниках нет силы

Там есть только движение электрических зарядов

В проводниках нет силы. Там есть только движение электрических зарядов

Но термин «сила тока» не следует воспринимать, как проявление силы в буквальном смысле. В проводниках нет силы. Там есть только движение электрических зарядов.

Если за время t через проводник сечением S протекает Q зарядов, то величина тока выражается  формулой

I = Q/t

Единица измерения величины тока в системе СИ — ампер (А). Ток в проводнике равен 1 амперу, если за 1 секунду через проводник протекает заряд величиной в 1 кулон. Измеряют силу тока прибором, который называется амперметром. Он включается последовательно в электрическую цепь.

Для постоянного тока в единицу времени через любое поперечное сечение протекает одинаковое количество электрических зарядов.

Величина, равная отношению силы тока I к площади поперечного сечения проводника S, называется плотностью тока. В системе СИ плотность тока измеряется в А/м2. Конечно, практически невозможно найти проводник с диаметром сечения, равным квадратному метру. По этой причине силу тока принято измерять в А/мм2.

j = I/S

Любой проводник противодействует протеканию по нему электрических зарядов

Поэтому величина тока в проводнике зависит от другой важной величины, называемой сопротивлением. Это физическая величина, характеризующая способность проводника препятствовать прохождению электрического тока. Она обозначается буквой R и определяется по формуле:

Она обозначается буквой R и определяется по формуле:

R = UI,

где U – напряжение, или разность электрических потенциалов, на концах проводника;

I – сила тока, протекающего между концами проводника.

В систем СИ единицей измерения сопротивления является ом.

Разные материалы по-разному сопротивляются движению тока. Поэтому сопротивление проводника зависит от вещества, из которого он сделан, его длины и сечения.

R = ρ ˑ l /S

где ρ – удельное электрическое сопротивление проводника, его способность препятствовать прохождению электрического тока;

l– длина проводника;

S — площадь поперечного сечения проводника.

Каждый источник постоянного электрического тока создаёт стороннее электрическое поле, совершающее работу по разделению положительно и отрицательно заряженных частиц и перемещению их в электрической цепи. Эту работу производят любые силы не электрического происхождения, которые действуют внутри источника. Они называются сторонними силами. Возникают эти силы по разным причинам. Например, в гальваническом элементе они появляются в результате химических реакций, а в генераторах постоянного тока – при движении проводника в магнитном поле.

Популярные статьи  Асинхронный электродвигатель: устройство, принцип работы, виды

Величина, численно равная работе, которую выполняют сторонние силы, перенося единицу положительного заряда по всей замкнутой цепи, называется электродвижущей силой (ЭДС).

где Е – ЭДС; А – работа, совершаемая источником по переносу заряда величиной Q.

Единицей измерения ЭДС в системе СИ является вольт (v, V). ЭДС источника тока равна 1 вольту, если при перемещении заряда, равного 1 кулону, совершается работа в 1 джоуль.

Перенося электрический заряд, источник тока совершает работу А по внутреннему участку (внутри себя самого) и работу А1 по внешнему участку электрической цепи. Поэтому полная работа А = А+ А1. Разделив обе части уравнения на Q, получим

Величина AQназывается падением напряжения на внутреннем участке цепи (U), а A1Q— падением напряжения на внешнем участке цепи (U1).

A = U + U1, а U1 = А – U.

Величина, равная произведению тока на напряжение, называется мощностью. Единица измерения мощности – ватт.

P = IU = I2 R = U2R

Если в электрической цепи есть источник ЭДС, то P = I ˑ ε, где ε – ЭДС.

Понижаем постоянное напряжение

При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.

Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

Как понизить напряжение?
Рис. 1. Замена резистора или стабилитрона

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

Как понизить напряжение?
Рис. 2. Понижение постоянного напряжения диодами

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Высокое или повышенное напряжение. Как понизить напряжение в сети

Как понизить напряжение?

Как в наших электросетях могут появиться высокое или повышенное напряжение? Как правило к повышению напряжения могут привести некачественные электрические сети или аварии в сетях.

К недостаткам сетей можно отнести: устаревшие сети, низкокачественное обслуживание сетей, высокий процент амортизации электрооборудования, неэффективное планирование линий передач и распределительных станций, не управляемый рост количества потребителей.

Это приводит к тому, что сотни тысяч потребителей, получают высокое или повышенное напряжение. Значение напряжения в таких сетях может достигать 260, 280, 300 и даже 380 Вольт.

Одной из причин повышенного напряжения, как ни странно, может быть пониженное напряжение потребителей, находящихся далеко от трансформаторной подстанции.

В этом случае часто электрики умышленно повышают выходное напряжение электрической подстанции, чтобы добиться удовлетворительных показателей тока у последних в линии передач потребителей. В итоге, у первых в линии напряжение будет повышенным.

По этой же причине можно наблюдать повышенное напряжение в дачных поселках. Здесь изменение параметров тока связаны с сезонностью и периодичностью потребления тока. Летом мы наблюдаем рост потребления электроэнергии.

В этот сезон на дачах находится много людей, они используют большое количество энергии, а зимой потребление тока резко падает. В выходные дни потребление на дачных участках растёт, а в рабочие дни падает. В результате имеем картину неравномерного потребления энергии.

В этом случае, если установить выходное напряжение на подстанции (а они, как правило, недостаточной мощности) нормальным (220 Вольт), то летом и в выходные напряжение резко просядет и будет пониженным. Поэтому электрики изначально настраивают трансформатор на повышенное напряжение. В итоге зимой и в рабочие дни напряжение в поселках высокое или повышенное.

https://youtube.com/watch?v=IIhXY6Oja68

Вторая большая группа причин появления высокого напряжения — это перекосы по фазам при подключении потребителей. Часто бывает так, что подключение потребителей происходит хаотично без предварительного плана и проекта.

Или в ходе реализации проекта или развития поселений происходит изменение значения потребления на разных фазах линии передач.

Это может привести к тому, что на одной фазе напряжение будет пониженным, а на другой фазе — повышенным.

Второй случай — это редкость, случается в городах в сильный ветер, ураган. Бывает, что линия питания электротранспорта (трамвая или троллейбуса) попадает при обрыве на линии городских сетей.

В этом случае в сеть может попасть и 300, и 400 Вольт.

Теперь рассмотрим, что происходит при пропадании «нуля» во внутренние домовые сети. Этот случай бывает довольно часто. Если в одном подъезде дома используется две фазы, то при пропадании нуля (например, нет контакта на нуле) происходит изменение значения напряжения на разных фазах.

На той фазе, где сейчас нагрузка в квартирах меньше, напряжение будет завышенным, на второй фазе — заниженным. Причем напряжение распределяется обратно пропорционально нагрузке.

Так, если на одной фазе нагрузка именно в этот момент в 10 раз больше, чем на другой, то мы можем получить на первой фазе 30 Вольт (низкое напряжение), а на второй фазе — 300 Вольт (высокое напряжение). Что приведет к сгоранию электрических приборов и, возможно, пожару.

Чем опасно высокое и повышенное напряжение

Высокое напряжение опасно для электрических приборов. Значительное повышение напряжения может привести к сгоранию приборов, их перегреву, дополнительному износу. Особенно критичны к высокому напряжению электронное оборудование и электромеханические приборы.

Повышенное напряжение может привести к пожару в доме, нанести большой ущерб.

Как защититься от высокого напряжения и как понизить напряжение в сети

Чтобы защитить свои сети от повышенного напряжения, пиков высокого напряжения, скачков тока и перенапряжения необходимо использовать устройства защиты от скачков напряжения.

Подробнее смотрите в разделе “Устройства защиты от импульсных перенапряжений”. Чтобы понизить напряжение, нормализовать параметры тока необходимо использовать стабилизаторы.

Подробнее смотрите в разделе “Стабилизаторы напряжения”.

Повышение переменного напряжения

Повысить переменное напряжение можно двумя способами – использовать трансформатор или автотрансформатор. Основная разница между ними состоит в том, что при использовании трансформатора есть гальваническая развязка между первичной и вторичной цепью, а при использовании автотрансформатора её нет.

Популярные статьи  Ручная и автоматическая электродуговая сварка

Интересно! Гальваническая развязка – это отсутствие электрического контакта между первичной (входной) цепью и вторичной (выходной).

Рассмотрим часто возникающие вопросы. Если вы попали за границы нашей необъятной родины и электросети там отличаются от наших 220 В, например, 110В, то чтобы поднять напряжение со 110 до 220 Вольт нужно использовать трансформатор, например, такой как изображен на рисунке ниже:

Следует сказать о том, что такие трансформаторы можно использовать «в любую сторону». То есть, если в технической документации вашего трансформатора написано «напряжение первичной обмотки 220В, вторичной – 110В» – это не значит, что его нельзя подключить к 110В. Трансформаторы обратимы, и, если на вторичную обмотку подать, те же 110В – на первичной появится 220В или другое повышенное значение, пропорциональные коэффициенту трансформации.

Следующая проблема, с которой многие сталкиваются – низкое напряжение в электросети, особенно часто это наблюдается в частных домах и в гаражах. Проблема связана с плохим состоянием и перегрузкой линий электропередач. Чтобы решить эту проблему – вы можете использовать ЛАТР (лабораторный автотрансформатор). Большинство современных моделей могут как понижать, так и плавно повышать параметры сети.

Как понизить напряжение?

Схема его изображена на лицевой панели, а на объяснениях принципа действия мы останавливаться не будем. ЛАТРы продаются разных мощностей, тот что на рисунке примерно на 250-500 ВА (вольт-амперы). На практике встречаются модели до нескольких киловатт. Такой способ подходит для подачи номинальных 220 Вольт на конкретный электроприбор.

Если вам нужно дёшево поднять напряжение во всем доме, ваш выбор — релейный стабилизатор. Они также продаются с учетом разных мощностей и модельный ряд подходит для большинства типовых случаев (3-15 кВт). Устройство основано также на автотрансформаторе. О том, как выбрать стабилизатор напряжения для дома, мы рассказали в статье, на которую сослались.

Как понизить напряжение?

Как подобрать радиоэлементы для выпрямителя

Давайте вернемся к нашему вопросу в начале статьи. Как все-таки получить на выходе постоянный ток 12 Вольт для своих нужд?  Сначала нужно подобрать трансформатор, чтобы на выходе он выдавал … 12 Вольт?  А вот и не угадали!  Со вторичной обмотки трансформатора мы будем получать действующее напряжение.

Как понизить напряжение?

где

UД — действующее напряжение, В

Umax — максимальное напряжение, В

Поэтому, чтобы получить 12 Вольт постоянного напряжения, на выходе трансформатора должно быть 12/1,41=8,5 Вольт переменного напряжения. Вот теперь порядок. Для того, чтобы получить такое напряжение на трансформаторе, мы должны убавлять или добавлять обмотки трансформатора. Формула здесь. Потом подбираем диоды. Диоды подбираем исходя из максимальной силы тока в цепи. Ищем подходящие диоды по даташитам (техническим описаниям на радиоэлементы). Вставляем конденсатор с приличной емкостью. Его подбираем исходя из того, чтобы постоянное напряжение на нем не превышало то, которое написано на его маркировке. Простейший источник постоянного напряжения готов к использованию!

Кстати,  у меня получился 17 Вольтовый источник постоянного напряжения, так как у  трансформатора на выходе 12 Вольт (умножьте 12 на 1,41).

Ну и напоследок, чтобы лучше запомнилось:

Как понизить напряжение?

Показываем на примере в видео:

Эффективность приборов для защиты от скачков напряжения

Подытожив, можно сказать, что сетевой фильтр и РКН обеспечивают лишь частичную защиту и не справляются со всем спектром сетевых проблем. Стабилизатор напряжения и ИБП универсальнее – подключенное к ним оборудование менее досягаемо для негативных сетевых воздействий (если перед стабилизатором или ИБП дополнительно установить УЗИП, то уровень защиты возрастет ещё больше).

Как понизить напряжение?

Однако далеко не все стабилизаторы и ИБП качественны и по-настоящему надежны, поэтому следует максимально внимательно подходить к выбору устройства и при возникновении любых вопросов консультироваться с профессионалами.

Стоит отметить, что средняя стоимость качественного ИБП превышает стоимость схожего по мощности и качеству стабилизатора (при примерно одинаковом функционале по борьбе с сетевыми скачками).

Трансформаторы

Трансформатор — неподвижный (статический) электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.

Простейший трансформатор состоит из замкнутого ферромагнитного сердечника и двух обмоток. Обмотка, подключенная к генератору, называется первичной. Обмотка, к которой подключена нагрузка, называется вторичной.

Работа трансформатора основана на явлении электромагнитной индукции.Переменный ток, протекающий по первичной обмотке, создает в сердечнике трансформатора переменный магнитный поток Ф, который, пронизывая обмотки. индуктирует в каждом витке некоторую э. д. с. (Е). Действующее значение э. д. с., определяется по формуле

где Е-действующеезначение э.д. с.;

Φm-амплитудное значение магнитного потока, вб.

Если принять число витков ω=1, то E=4,44fΦm

Как понизить напряжение?

Электродвижущие силы, наводимые магнитным потоком Φ, в обмотках трансформатора будут, очевидно, пропорциональны количеству витков. Если числа витков первичной и вторичной обмоток обозначить соответственно ω1 и ω2, то для действующего значения э. д. с. самоиндукции первичной обмотки (Е1) будем иметь Е1=ω1Е, аналогично э. д. с. взаимоиндукции вторичной обмотки Е2=ω2Е.

называют коэффициентом трансформации и обозначают буквой К:

Если трансформатор не нагружен ( т. е. цепь вторичной обмотки разомкнута), то напряжение на ее зажимах равно э. д. с. (U2=E2). В тоже время, поскольку первичная обмотка обладает относительно большим индуктивным сопротивлением и ток потребляемый ею от сети, невелик, можно пренебречь падением напряжения на ее активном сопротивлении. Тогда приложенное к первичной обмотке напряжение будет численно равно э. д. с . самоиндукции (U1≈E1). Итак при отсутствии нагрузки U1≈E1и U2=E2. Следовательно, отношение Е1/Е2можно заменить отношением U1/U2, т. е.

Таким образом, коэффициент трансформации есть отношение напряжения на зажимах первичной обмотки к напряжению на зажимах вторичной обмотки при отсутствии нагрузки ( или, как принято говорить, при холостом ходе трансформатора).

В зависимости от величины коэффициента трансформации трансформаторы подразделяются:

— на повышающие ω1ω2; U1>U2; К>1;

Высокое напряжение в сети: что делать, причины, последствия

Наиболее часто от высокого напряжения в сети страдают бытовые потребители.

Тем более что электроснабжающая организация может намеренно увеличивать его  уровень для потребителей электроэнергии, чтобы обеспечить нужную величину в конце цепи.

  В отличии от промышленных объектов, эта категория, как правило, не имеет надлежащей защиты, которая эффективно боролась бы с причинами таких нарушений.

Меры нормализации уровня напряжения в сети

По месту воздействия меры, направленные на борьбу с высоким напряжением, могут быть общими, влияющими  на всю сеть, и локальными, применяемые к определенному потребителю.

Обратите внимание, что при локальных мерах, к примеру, у себя дома или в ЧП нет никакой необходимости согласовывать установку стабилизатора с поставщиком электроэнергии. В то время как общие меры требуют обращения в определенные инстанции

В то время как общие меры требуют обращения в определенные инстанции.

Куда жаловаться, чтобы решить проблему?

При высоком сетевом напряжении вы можете обратиться с соответствующей просьбой о принятии мер в контролирующие органы.

Это могут быть и местные городские или поселковые советы или непосредственно электроснабжающая организация. Первый вариант наиболее действенен, так как их функция – это контроль над работой того же РЭСа.

Но из-за большого количества передаточных звеньев обращение в местные органы является длительной процедурой.

Для обращения в электроснабжающую организацию вам необходимо не только сообщить о высоком напряжении на собственном присоединении, но и поинтересоваться этим параметром у соседних потребителей. Так как в случае, если других уровень устраивает, или кто-то из них жалуется на низкое напряжение, то дополнительно его понижать однозначно не станут.

Как правило, в РЭСе не спешат реагировать на единичные обращения, которые рассматривают интересы одного потребителя, но могут повлиять на трехфазный ток для всей группы или района.

Популярные статьи  Понижающий трансформатор: устройство, принцип действия, разновидности

Поэтому в таких случаях наиболее быстрым вариантом борьбы с высокой разностью потенциалов является установка стабилизаторов и других защитных устройств.

Как понизить высокое напряжение у себя дома?

Если вы  не можете повлиять на величину напряжения посредством письменного обращения или оно попросту не дало желаемого результата, то необходимо установить устройства защиты. Среди наиболее распространенных вариантов следует выделить:

  • Сетевой фильтр – позволяет устранять непродолжительные импульсные перенапряжения. Подразделяется на несколько категорий, в зависимости от сложности устройства и специфики работы защищаемого объекта. Его недостатком является невозможность устранения длительного перенапряжения в сети.
  • Стабилизатор напряжения – позволяет изменить величину высокого или низкого напряжения на входе до номинального значения. При этом обеспечивается не только идеальное питание потребителя, но и его защита от аварийных режимов – скачков электрического тока при атмосферных перенапряжениях, коротких замыканиях и т.д.Рисунок 2: Нормализация при помощи стабилизатора
  • Реле контроля напряжения – производит отключение всех устройств от сети, в которой низкое или высокое напряжение пересекло уровень допустимых отклонений. Естественный недостаток устройства в том, что оно не решает проблему длительного увеличения потенциала. А после коммутации реле, его необходимо включать назад самостоятельно.

При установке автоматики, самостоятельно отсекающей питание в случае обнаружения перенапряжения, для возобновления электроснабжения могут применяться источники бесперебойного питания. Которые продолжат запитку оборудования до нормализации потенциала в сети.

Рис. 3. Пример включения источника бесперебойного питания

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга — возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Делитель напряжения на индуктивностях

Как понизить напряжение?

Индуктивность — это катушка, намотанная медным (как правило) проводом на металлическом или ферромагнитном сердечнике. Трансформатор — это один из видов индуктивности. Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания. Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.

Но можно использовать несколько катушек (для примера можно взять две), соединить их последовательно и включить в сеть переменного тока. Зная значения индуктивностей, несложно произвести расчет падения на каждой из них:

  1. U(L1) = U1 * (L1 / (L1 + L2)).
  2. U(L2) = U1 * (L2 / (L1 + L2)).

В этих формулах L1 и L2 — индуктивности первой и второй катушек, U1 — напряжение питающей сети в Вольтах, U(L1) и U(L2) — падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: