Языки программирования PLC: LD, FBD, SFC, ST, IL, CFC

Контроллеры как замена реле

До конца 60-х годов для управления отдельными функциями управляющие системы содержали реле и независимые контроллеры контура управления аналоговой частью системы. Использование этих узлов было источником значительных проблем, так как они требовали очень больших объемов для размещения реле в шкафах управления, дорогого и длительного процесса внесения изменений в схему, а также буквально титанических усилий для поиска и ликвидации неисправностей.

В начале 70-х годов прошлого века были созданы PLC, которые стали широко применяться в промышленных приложениях, заменив собой системы, использующие реле. Первые PLC имели большие размеры, однако все равно они занимали меньше места, чем целые стены из реле, а их программирование проводилось с помощью отдельного терминала. Их недостатком был ограниченный набор команд.

Конфигурирование и первый запуск — самый трудный период, в течение которого приходит понимание, подходит или не подходит выбранная платформа для данного применения.

В конце семидесятых на смену управления отдельными цепями пришли распределенные системы управления (Distributed Control System, DCS), которые привнесли централизованный процесс управления в контролируемое ими окружение. Система типа DCS, как правило, содержит множество стоек ввода/вывода (I/O), которые находятся в непосредственной близости от управляемого устройства, а также персональный компьютер для визуализации и управления. Системы визуального контроля и ввода данных являются неотъемлемой частью DCS и используются для контроля и управления процессами. В начале 80-х годов PLC начинают использоваться в качестве промежуточного звена между DCS и стойками компонентов распределенного управления.

Контроллеры типа PLC имели множество преимуществ, таких как усовершенствованная система управления питанием, увеличенная память, улучшенные операции с битами и уменьшенный размер по сравнению с другими компонентами. Эти преимущества положили начало их классификации уже как систем автоматизации, которые были далеки от начальной концепции PLC. Так, в настоящее время мы имеем еще две группы устройств — PAC и IPC, которые, наследуя основные концепции PLC, сформированные еще в начале семидесятых, имеют новые возможности и функции, отличающие их от оригинальных программируемых контроллеров.

Описание ПО для программирования и конфигурирования ПЛК CODESYS

CODESYS – это не только среда программирования — это целый комплекс средств по работе с промышленным оборудованием. Он включает собственный OPC-сервер, графический редактор для создания визуализаций, менеджер рецептов, лог аварий и многое другое. На данный момент выпускаются контроллеры на базе двух версий CODESYS: версия 2 и версия 3.

CODESYS v2 поддерживается производителем только в режиме исправления ошибок. Новые функции в него уже не добавляются. Тем не менее, функционала CODESYS v2 достаточно для подавляющего большинства задач. К тому же он требует меньше ресурсов ПЛК и компьютера.

CODESYS v3 – это совершенно новая разработка. В основу CODESYS v3 положен модульный принцип, который позволяет дополнять систему посредством подключения дополнительных модулей.

Основные отличия СODESYS v3 от v2:

  • Поддержка элементов Объектно Ориентированного Программирования (ООП).
  • Новый язык программирования UML (Unified Modelling Language), тесно связанный с ООП.
  • Сети ПЛК — инструмент управления в одном проекте несколькими контроллерами.
  • Управление системами движения (CODESYS SoftMotion).
  • Оптимизация программного кода (сложные конструкции типа IF … END_ IF можно «сворачивать» для упрощения просмотра кода).
  • Обновленный и улучшенный менеджер визуализаций. Появились стили визуализаций, которые позволяют изменить оформление проекта в один клик, а также существенно расширилась библиотека графических элементов.

И это лишь немногие изменения, которые принесла третья версия CODESYS. Таким образом, CODESYS v3 аккумулировал в себе многие тенденции современной промышленной автоматизации и продолжает регулярно обновляться, обзаводясь всё новыми и новыми функциями.

О тенденциях в промышленных сетях

С тех пор, как в 1979 году появился протокол Modbus, он стал де-факто стандартом промышленной сети. Изначально он был спроектирован для использования с последовательными интерфейсами RS-232/RS-485. Позже практически без изменений он «перекочевал» в сети Ethernet в виде протокола Modbus TCP.

Всемирная популярность протокола Modbus обусловлена несколькими причинами:

  • Протокол является полностью открытым, его спецификация доступна всем. При этом нет необходимости в специальных интерфейсных микросхемах для реализации.
  • Реализация Modbus очень проста на программном уровне.
  • Дешевая среда передачи (обычная витая пара).
  • Высокая надежность передачи данных благодаря использованию в каждой посылке контрольной суммы.

При разработке протокол был рассчитан на потребности и вычислительные возможности оборудования того времени. Многие актуальные для сетей нынешнего времени вопросы учтены не были:

  • Это низкая пропускная способность шины.
  • Отсутствие какой-либо начальной инициализации системы. Пользователю вручную придется настраивать каждое устройство перед включением его в сеть (а именно задавать ему адрес, скорость обмена и т.д.).
  • Дешевая среда передачи (обычная витая пара).
  • В стандарте четко прописано использование только двух типов данных: BOOL и WORD. Соответственно, при передаче других типов данных зачастую возникают разночтения между устройствами разных производителей.

Стремление к развитию промышленных сетей привело в появлению в 2003 году стандарта EtherCAT.

Основой EtherCAT является технология Ethernet, что позволяет использовать все преимущества данной технологии.

Принцип действия ПЛК

В отличие от микропроцессорной техники принцип действия ПЛК немного другой. Софт делится на две части. Первая часть представляет собой блок системных программ. Если провести аналогию с ПК, то системное ПО контроллера выступает в роли операционной системы, ответственной за работу низкоуровневых процессов. Системная часть ПО устанавливается в постоянной памяти в любой момент вступает в работу.

Когда ПЛК включается, то уже через мгновение запускается операционная система. Выполнение пользовательской программы циклическое. Цикл работы состоит из четырех фаз:

  • Опрос входов;
  • Выполнение команд;
  • Установка значений для входов;
  • Вспомогательные операции.

Первая фаза цикла полностью обеспечивается системным ПО управления ПЛК. Затем управление берет на себя прикладное ПО – созданный оператором алгоритм. По данной программе контроллер будет выполнять то, что от него хотят. По завершению выполнения этих команд работа опять передается системному ПО. Процесс составления управляющей прикладной программы ПЛК максимально упрощен – программист не должен задумываться, как управлять аппаратными возможностями. Оператор лишь должен указать, какой сигнал будет на входе и как нужно на него реагировать на выходе.

Популярные статьи  Почему при выключенных распределителях горит свет в коридоре?

Подробности об языке программирования на ST в CoDeSyS

Языки программирования PLC: LD, FBD, SFC, ST, IL, CFC

Прежде чем мы с вами будем рассматривать упрощённую графическую систему программирования для технологов, хотелось бы в двух словах рассказать о базисном языке программирования СИ. Язык ST CoDeSyS отличается от других своей гибкостью и адаптивностью под любые задачи. Он позволяет обрабатывать сложные решения и видеть всю картину в целом. Чаще всего применяется в функциональных блоках для обработки алгоритма той или иной части рабочего органа станка или линии.

Из этой статьи вы узнаете:

Здравствуйте уважаемые Дамы и Господа! Меня зовут Гридин Семён, и я являюсь автором этого блога. В данном посте я хочу обсудить с вами базовые понятия языка программирования CoDeSyS. Называется он ST CoDeSyS, очень сильно напоминает СИ.

Особенности ПО для программирования и конфигурирования ПЛК CODESYS

Первая версия CODESYS увидела свет в 1994 году. С тех пор CODESYS обрел огромную популярность среди пользователей и производителей ПЛК. На данный момент сотни производителей выпускают тысячи моделей контроллеров на базе CODESYS.

CODESYS очень удобен для программиста.

  • Тот, кто раньше делал релейные схемы, легко сможет их адаптировать для ПЛК в языке LD.
  • Программисты высокого уровня по достоинству оценят язык ST, который для них будет понятным и доступным.
  • Разветвленные алгоритмы с четкой последовательностью действий удобно реализовывать с помощью SFC.
  • А если человек ни разу не сталкивался с программированием, то возможно стоит начать с FBD или CFC.

Единожды изучив среду программирования, вы будете уметь программировать огромное количество контроллеров, основанных на CODESYS.

Языки программирования ПЛК (Тема)

Прикладное программное
обеспечение контроллеров разрабатывается с помощью специальных технологических
языков, большей частью рассчитанных не на квалифицированных программистов, а на
специалистов по автоматизации. Наиболее простой и распространенный язык
программирования цепей контроля и управления — это набор программных модулей
типовых алгоритмов обработки измерительной информации, регулирования, блокировочных
зависимостей и графический конфигуратор, который собирает эти модули в заданные
цепи контроля и управления. До недавнего времени (а частично и сейчас) каждый
производитель ПТК разрабатывал свои языки программирования контроллеров. В
последние годы ситуация начинает изменяться. К середине 90-х годов
технологические языки программирования контроллеров были стандартизированы —
стандарт IEC
1131.3. Этот стандарт определяет структуру пяти технологических языков:

-LD — язык лестничных диаграмм. Графический
традиционный язык релейных блокировок, в котором разработчик изображает необходимые
релейные схемы;

-FBD — язык функциональных блоковых диаграмм.
Графический конфигуратор с набором типовых программных модулей;

-SFC — язык последовательных функциональных
схем. Язык, близкий к традиционному программированию, предназначен для
реализации алгоритмов последовательного управления. Элементы языка — процедуры
и транзакции используются для определения порядка операций, написанных на любом
языке стандарта;

-ST — язык структурированного текста. Язык
типа Pascal, поддерживающий
структурное программирование. Он может использоваться для программирования
процедур и переходов в языке SFC и дополнять другие языки стандарта;

-IL — язык инструкций. Язык низкого уровня
типа Ассемблера, но без ориентации на конкретную микропроцессорную архитектуру.
С его помощью можно создавать быстродействующие программные модули.

Два первых графических языка
являются основными, а остальные языки служат дополнениями к ним.

В стандарте описываются
спецификации механизмов, посредством которых пользователи могут определять
новые типы данных, функции и функциональные блоки; т. е. стандарт в этом плане
является саморасширяющемся. При необходимости многократно применять одну и ту
же последовательность функций, можно выделить ее в отдельный функциональный
блок, поместить в библиотеку и устанавливать в любые программы управления. Вес
языки стандарта можно комбинировать; можно также включать в программу
фрагменты, написанные на традиционных языках.

Сертификация конкретных
языков на соответствие стандарту осуществляется организацией PLCopen, имеющей свои отделения в разных странах.
Сформулировано три уровня совместимости конкретных языков со стандартом:

-базовый уровень, когда язык
соответствует некоторому подмножеству стандарта IEC 1131.3 (начальный уровень). На этом уровне
проверяются типы переменных и языковые конструкции;

-уровень переносимости
функций, когда существует формат файла обмена функциональных блоков;

-уровень совместимости и
приложений, когда совместимость реализована на уровне приложений и возможен
перенос завершенных приложений. Данный уровень спецификации находится в разработке.

Более десятка фирм,
специализирующихся на программных продуктах, выпускают сейчас технологические
языки по этому стандарту, ориентированные на работу под определенными типовыми
операционными системами (т. е. открытые технологические языки), что позволяет
разработчикам ПТК использовать их в своих комплексах. Практически большинство
контроллеров, выпускаемых в последние годы, оснащаются тем или иным числом технологических
языков, соответствующих этому стандарту. Эти языки либо разработаны самими
разработчиками контроллеров, либо закуплены последними у фирм, специализирующихся
на программных продуктах.

Перспективные контроллеры в
части их прикладного программного обеспечения выделяются следующими факторами:

-они обеспечены
технологическими языками по стандарту IEC 1131.3;

-обязательный набор таких
языков — языки типа LD и
FBD. Желательный набор
— все пять языков стандарта;

-эти языки сертифицированы на
соответствие стандарту желательно по уровню переносимости функций;

— к языку FBD (функциональных блоковых диаграмм) прилагается
обширный (порядка сотен единиц) набор программных модулей типовых алгоритмов
контроля и управления;

-в этот набор, кроме обычных
простейших функций, входят продвинутые типовые модули управления (AdvanceControl), повышающие эффективность автоматизации:
модуль самонастройки регуляторов, адаптивные регуляторы, регуляторы на нечеткой
логике, нейрорегуляторы и т.д.

Проблемы совместимости программы с аппаратной частью

Возможно, в процессе работы выяснится, что аппаратная часть контроллера не соответствует поставленной задаче. Например, не хватает входов или выходов, памяти или быстродействия.

Проблема с нехваткой входов или выходов легко решается приобретением дополнительных периферийных модулей. Они подключаются к центральному модулю (который имеет свои входы и выходы), обмен данных происходит по внутренней шине.

С памятью и быстродействием решить вопрос просто не получится, поэтому перед приобретением «железа» нужно обкатать программу в программном эмуляторе, который есть в каждой среде программирования.

Установка к CODESYS

Для того чтобы устройство программировалось в CODESYS, в нем предварительно должна быть установлена так называемая система исполнения CODESYS Control. Она включает планировщик задач, загрузчик, функции отладки, обслуживает полевые сети, ввод/вывод и т. д. Именно благодаря ей МЭК-программа оказывается аппаратно-независимой. Набор ресурсов, которые должна обслуживать система исполнения, отличается у разных контроллеров. Речь идет не только о микроконтроллере, но и об устройстве в целом. По этой причине нельзя просто скопировать систему исполнения с одного устройства на другое. Она всегда требует некоторой индивидуальной адаптации. Все существующие встраиваемые системы с CODESYS созданы одним из трех способов:

  1. Бизнес-модель разработчиков CODESYS ориентирована на серийно выпускаемые изделия. Изготовитель ПЛК приобретает стартовый набор. Это комплекс из программного обеспечения и работ по обучению, помощи в адаптации и дальнейшему сопровождению. На выходе получается специальная «прошивка», «заточенная» под конкретную систему и готовая к тиражированию. Первая адаптация обычно занимает несколько месяцев. Выполнив ее, компания приобретает необходимый опыт и может самостоятельно устанавливать CODESYS на любые свои продукты достаточно быстро, даже если они построены на разных процессорах и в разных операционных системах.
  2. Существуют компании (Systec, Janz, Frenzel Berg и др.), предлагающие готовые встраиваемые устройства с CODESYS и системы под заказ. Заказчику остается только написать прикладное ПО. Обычно такие компании выпускают собственный ряд модулей-«полуфабрикатов». У них имеется надежное аппаратное ядро (встраиваемый компьютер, микропроцессорный модуль, PLC Сore), определенный набор плат или микросхем ввода/вывода, сетевые и другие модули. Из них компонуется нужная система. Они также предлагают несколько типов готовых встраиваемых компьютеров (контроллеров) с CODESYS и эволюционные наборы.
  3. Применение микросхем и модулей Beck [email protected] Это миниатюрный встраиваемый компьютер с ОС РВ на борту. Компании Beck удалось придумать технологию и создать специальный инструмент — Platform Builder (кстати, бесплатный). С его помощью в диалоговом режиме мы задаем требуемую конфигурацию системы исполнения CODESYS. Например, можно включить поддержку CANopen, веб-визуализации, описать входы/выходы, выбрать способ обслуживания энергонезависимой памяти, добавить собственные обработчики системных событий и т. п. Затем автоматически генерируются все необходимые файлы. Остается дописать по готовым шаблонам драйверы ввода/вывода под нашу периферию и собрать систему исполнения. Получается исполняемый файл, который копируется на встроенный диск [email protected] Технология выглядит простой, но пока никто из конкурентов не создал аналогов. Все они предлагают некие типовые сборки PLC Core ядер с фиксированным функционалом.
Популярные статьи  Магнитный двигатель: миф или реальность?

По требованию российских заказчиков Beck создала специальное исполнение чипов с расширенным температурным диапазоном (–40 °С). Существует исполнение для энергетики с поддержкой коммуникационной библиотеки МЭК 61850.

Первый путь выбирают крупные изготовители встраиваемых систем. Он оправдан при выпуске от нескольких сотен изделий в год и выше. В странах ЕС все более развивается практика заказа разработки. По числу применений в России лидирует технология Beck [email protected] В любом случае среда программирования CODESYS поставляется бесплатно. Никаких ограничений в функционале и числе установок в ней не предусмотрено. В CODESYS имеется встроенный эмулятор контроллера. Это позволяет начать работу без приобретения аппаратных средств.

Рис. «Беспилотный» транспортер E&K AUTOMATION на базе собственного встроенного контроллера и модулей ввода/вывода Wago IO

Термины и определения

Разница между ПЛК и ПКА может проникать и в другие технологии. Например, системы на кристалле (СнК), с английского System-on-a-Chip (SoC), встроенные компьютеры (embedded PC) и программируемая пользователем вентильная матрица (FPGA) предлагают собой некоторые технологии, которые способны заменять или расширять возможности программируемых логических контроллеров. Тем не менее, для некоторых технологий пока не существует устоявшихся определений, и ученые спорят о более правильном описании их. Но мы постараемся привести некоторые основные определения.

Программируемый логический контроллер ПЛК

Представляет собой цифровой компьютер, предназначенный для автоматизации промышленных систем. Он специально разрабатывался для работы в жестких условиях эксплуатации, таких как температурные диапазоны, давление, электрические шумы, вибрации и другие неблагоприятные факторы промышленной среды. Он имеет наиболее важную особенность, которая, собственно, и привело его к такой популярности – это жесткая система реального времени.

Режим реального времени

Многие понимают режим реального времени как выполнение задачи «как можно скорее». Но это не так. Система реального времени гарантирует, что все входы,  выходы и вычислительные процессы будут обрабатываться за какой-то фиксированный промежуток времени, часто упоминаемый в технической литературе как дедлайн (с англ. deadline – предельный срок). В системах жесткого реального времени нарушение дедлайнов  приравнивается к отказу системы. В свою очередь мягкая система реального времени допускает небольшие превышение дедлайнов, но только тогда, когда это приводит к допустимому снижению качества работы системы. Например, видеоконференция. Небольшое запаздывание звука или видео не приведет к катастрофическим последствиям.

При компиляции программы ПЛК, он рассчитывает, есть ли необходимые ресурсы для выполнения пользовательских инструкций, после чего переходит к выполнению поставленной задачи в нужный срок.

Программируемый контроллер автоматизации ПКА

Представляет собой цифровой компьютер, включающий в себя функциональные возможности ПЛК. Программируемый контроллер автоматизации понятие относительно недавнее, появившееся в начале 2000-х. В большинстве случаев ПКА представляет собой эволюцию программируемого логического контроллера. ПЛК является мостом между электрической автоматизацией, построенной на реле, и электромеханической программируемой автоматизацией, где акцент делается на программное обеспечение операций (определение, данное 40 лет назад).

Мягкая система реального времени(softPLC)

Как упоминалось выше, мягкая система реального времени не дает гарантии своевременного выполнения поставленной задачи. По этому, их не применяют для систем управления движением. Вместо этого softPLC предпочтительны для подключения связей завод-цех, человеко-машинных интерфейсов, систем диспетчерского контроля и сбора данных (SCADA). Вполне возможно, для некоторых ПКА быть SoftPLC.

Встраиваемые ПК

Встраиваемый промышленный компьютер это не компьютер общего назначения. Он разработан и оптимизирован для одного пользовательского приложения. Все его компоненты, как правило, размещены на одной плате, включая и микроконтроллеры или микропроцессоры, шины ввода/вывода, память и другие пользовательские микросхемы. Устройство включает в себя даже программное обеспечение или прошивку (прошивка обычно находится в ПЗУ или памяти только для чтения). Встроенные ПК (embedded PC) действительно пересечение между аппаратным и программным обеспечением, поскольку существует тесная взаимосвязь между этими двумя частями – одна не может работать без другой. Проекты с использованием встраиваемых ПК могут реагировать на потребности жесткого или мягкого режима реального времени.

Структура и устройство ПЛК

Контроллер можно образно предоставить в формате мини-компьютера, но очень компактного и с особенностями. ПЛК, как и ПК, состоят из оперативной памяти, процессора, вспомогательного периферийного оборудования. Однако, дело еще и в том, что промышленные контроллеры должны выполнять не только расчетные задачи, как ПК, но и заниматься сбором информации от массы устройств – это датчики, сенсоры. Также контроллер и выдают сигналы в цепи.

Сейчас выпускаются контроллеры в различных форм-факторах. Это:

  1. Устройство типа «всё в одном». В одном корпусе объединен процессор, память, выходы/входы;
  2. Распределенные решения – процессорный модуль с обвязкой сделан в виде отдельного блока, а по шине или через интерфейсы подключатся модули для вывода и ввода.

Первые модели встречаются очень часто, однако, они рассчитаны на эксплуатацию в малых объектах и системах, где нужно обрабатывать малое количество сигналов.

Второй вид контроллеров используют в промышленности гораздо шире – производства с полнофункциональными АСУ требуют значительно большего числа сигналов, которые требуется обрабатывать. Если производство масштабное, то удобнее разнести модули вводы вывода по территории с объединением в единую сеть, которая подчиняется отдельному логическому контроллеру. Такие сети называют полевыми сетями или fieldbus. К этой седи подключаются датчики, исполнительные системы, которые являются интеллектуальными, так как имеют эту возможность.

Популярные статьи  Что такое и как устроена охранная сигнализация?

Существует масса видов полевых сетей. Стандарт IEC61158 (МЭК61158) включает в себя 8 видов сетей. А до введения этого стандарта каждый производитель придумывал и использовал свою полевую сеть.

В структуре ПЛК имеется базовые компоненты:

  • Модуль процессора;
  • Блок питания;
  • Модули для ввода/вывода.

Процессорный модуль оснащен встроенной памятью. Имеются разъемы для программатора, удаленных устройств, для подключения к сетям. Питание реализовано в виде отдельного блока. Модули могут быть дискретными либо аналоговыми.

В зависимости от того, сколько каналов для ввода и вывода и какой тип процессора, модули ввод/вывод могут быть установлены на одном шасси с ЦП или на нескольких. До конца 80-х годов модули для ввода и вывода данных располагались отдельно от процессора. В стандартном контроллере современного типа модуль входов и выходов находится на одном шасси с микропроцессором. Некоторые ПЛК позволяют устанавливать более одного микропроцессора.

Модели меньших размеров очень часто предназначены под DIN-рейку. Самые компактные микро или даже нано устройства имеют всю систему, включая адаптер питания и систему ввода/вывода в одном корпусе. Микро-контроллеры иногда оборудуются встроенными панелями для настройки и мониторинга. Большинство микро-решений имеют определенное количество каналов входов/выходов и увеличить их не возможно. Как пример — плата ардуино

Техническое задание

Создание и утверждение технического задания (ТЗ) – очень важная часть разработки ПО. От грамотно составленного ТЗ зависит, насколько эффективно будет вестись разработка.

Опытные программисты знают, что программа не пишется за один раз. Как правило, софт корректируется и приближается итерациями к конечному варианту в соответствии с пожеланиями конструкторов, инженеров, электриков, механиков и технологов

Поэтому очень важно на этапе составления ТЗ плотно взаимодействовать со всеми заинтересованными специалистами, которые подписывают ТЗ, а по окончании принимают работу

Устройство ПЛК

Часто ПЛК состоит из следующих частей:

  • центральная микросхема (микроконтроллер, или микросхема FPGA), с необходимой обвязкой;
  • подсистема часов реального времени;
  • энергонезависимую память;
  • интерфейсы последовательного ввода-вывода (RS-485, RS-232, Ethernet)
  • схемы защиты и преобразования напряжений на входах и выходах ПЛК.

Обычно вход или выход ПЛК нельзя сразу же подключить к соответствующему выходу центральной микросхемы. Эти выходы характеризуются низкими уровнями напряжений, обычно от 3,3 до 5 вольт. Входы и выходы ПЛК обычно должны работать с напряжениями 24 В постоянного либо 220 В переменного тока. Поэтому между выходом ПЛК и выходом микросхемы необходимо предусматривать усилительные и защитные элементы.

История создания

В 60 годах 20 века для управления телефонными станциями, промышленным оборудованием использовались сложные схемы с реле. Они не отличались повышенной надежностью или ремонтопригодностью. Инженерам одной из компаний, американской General Motors, была поставлена цель по созданию нового оборудования. Задачи, на которые оно было рассчитано, выглядели так:

  1. Упрощение отладки, замены.
  2. Относительная дешевизна.
  3. Гибкость, удобство модернизации.
  4. Снижение риска отказов.

Терминология, объясняющая, что такое ПЛК (PLC), внесена в международные и европейские стандарты качества МЭК, EN.

Виды языков программирования для ПЛК

LD (Ladder) – это среда разработки, которая основана на графике. Своего рода, она представляет собой подобие релейной схемы. Разработчики данного стандарта считают, что использование такого вида программной среды существенно облегчает переобучение инженеров релейной автоматики на ПЛК.

К главным недостаткам, данного языка программирования, можно отнести неэффективность при обработке процессов с большим количеством аналоговых переменных, так как он построен для представления процессов с дискретным характером.

FBD ( Диаграмма Функциональных Блоков) – здесь также используется графическое программирование. Образно говоря, FBD определяет собой некую множественность функциональных блоков, которые имеют соединения между собой (вход и выход).

Данные связи являются переменными и выполняют пересылку между блоками. Каждый блок в отдельности может представлять определенную операцию( триггер, логическое “или” и т.д.). Переменные задаются с помощью определенных блоков, а цепи выхода могут иметь связи с конкретными выходами контроллера или связи с глобальными переменными.

SFC ( Sequential Function Chart) – может использоваться с языками ST и IL, он также основан на графике. Принцип его построения близок к образу конечного автомата, данное условие относит его к самым мощным языкам программирования.

Технологические процессы, в данном языке, построены по типу определенных шагов. Структура шагов состоит из вертикали, которая идет сверху вниз. Каждый шаг – это конкретные операции. Описать операцию можно не только с помощью SFC, но и с помощью ST и IL.

Как только шаг выполнен, то идет действие по передачи управления следующему шагу. Переход между шагами может быть двух видов. Если на шаге выполнено какое – то условие и дальнейшим действием является переход на следующий шаг, значит – это условный переход. В случае же, если происходит полное выполнение всех условий на данном шаге и только потом осуществляется переход на следующий шаг, то-это безусловный переход.

Недостатком SFC можно считать, что в процессе работы может быть активировано несколько шагов, не в параллельных потоках. Поэтому необходим глобальный контроль со стороны программиста.

ST ( Структурированный Текст) – относится к языкам высокого уровня и имеет много сходного с Pascal и Basic.

ST позволяет интерпретировать более шестнадцати типов данных и имеет возможность работать с логическими операциями, циклическими вычислениями и т.д.

Небольшим недостатком можно определить отсутствие графической среды. Программы представлены в виде текста и данное условие усложняет освоение технологии.

IL ( Список Команд) – язык подобен Ассемблеру, обычно используется для кодировки блоков по отдельности. Плюсом является то, что данные блоки имеют большую скорость работы и низкую требовательность к ресурсам.

CFC ( Continuous Flow Chart) – относится к языкам высокого уровня. В принципе – это явное продолжение языка FBD.

Процесс проектирования состоит из использования готовых блоков и размещения их на экране. Далее происходит их настройка и размещения соединений между ними.

Каждый блок – это управление определенным технологическим процессом. Здесь идет основной уклон на технологический процесс, математика уходит на второй план.

http://electrik.info/main/school/1012-yazyki-programmirovaniya-plk-codesys.htmlhttp://controlengrussia.com/programmnye-sredstva/codesys/http://kipservis.ru/berghof/codesys_v3.htmhttp://kip-world.ru/plk-i-codesyshttp://www.asutpp.ru/yazyki-programmirovaniya-plc.html

Оцените статью
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: